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Abstract In this article, the eigenvalues of Laplacian acting on complex star metric graphs is considered.

The operator is coupled with the Neumann-Kirchhoff vertex condition, implying the self adjointness of

the operator. We exhibit the invariance of the eigenvalues over the number of the bonds of the star metric

graphs. Moreover, the eigenvalues are also invariant over parallel bonds of the star metric multigraphs.
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1. Introduction

The advent of complex systems gives rise to the study of dynamics on large networks,
where the hybrid (discrete-continuum) approach to discrete networks is more pronounced.
One of the approaches is using Metric Graphs, or Quantum Graphs, which have become
more mainstream in the last one or two decades. These studies appear naturally as a sim-
plified model of physics and engineering when one considers dynamics or flow of various
nature through quasi-one-dimensional objects, i.e. dynamics occurring in systems that
look like a thin neighborhood of a graph. Modern nanoscience is full of those objects such
as quantum wires, photonic crystals, carbon nano-structures, and thin waveguides. See
for example Berkolaiko & Kuchment [1], Carini, Londergan, and Murdock [2]. Mathemat-
ically speaking, the study of such object involves 1D complexes, and differential operators,
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called Hamiltonian, acting on the complexes. Various identification, depending on the na-
ture of the graphs, implies quite complicated matching conditions on vertices. Loosely
speaking, the study of this nature is actually an inquiry into differential equations on each
edge of the graph, satisfying various matching conditions at vertices.

One of the key studies of such objects is their spectral properties which are physically
related to the energy structure of the systems. We study in particular the spectra and
their properties of complex star metric graphs. Star graphs are important since they sit as
a subgraph on any graph. Therefore knowing the spectral properties of a star is important
to understand the global properties of the whole graph. Here we allow copiously bonds
of a star graph, hence the term complex star graphs or star multigraphs.

Spectral studies of star metric graphs have been carried out in [3, 4] Spectral studies
on general metric graphs are done in [1, 5]. For interactions between spectral properties
and vertex condition, one may consult [4] For self-adjointness in metric graph one may
find [1]. Finally for a more comprehensive review on metric graphs, or quantum graphs
see for example [1, 5]. Computation of the spectra in the existing literature is usually
done using scattering matrices of the metric graphs, coupled with some decomposition of
operators, see [1, 6]. In this article, we compute the eigenvalues using a simpler and more
accessible method, and hence more instructive for one starting to learn spectral studies
of operators on metric graphs.

This article is organized as follows. We include some basic digression on graphs, metric
graphs, and Hamiltonian operators, in Section 2. Some computation of spectra for star
metric graphs is given in Section 3, along with invariance under change of directions, and
addition of tentacles. Similar to what we do in Section 3, is repeated for Complex Star
Graphs. In the end, we conclude our results with some remarks.

2. Laplace operator (or Laplacian) on metric graphs

A graph Σ is a pair (V, E), where V = {vi} is the set of vertices, which can be finite or
infinite; and E = {ej} is the set of edges connecting the vertices. The notation E = |E|
and V = |V| will be used to denote the number of edges, and the number of vertices,
respectively. A graph is directed if, for each of its edges, a direction is assigned to it. In
this case, each edge has one origin vertex and one terminal vertex. Such a graph is called
a directional graph, or simply a digraph. Directed edges are called bonds. The set of all
bonds is denoted by B. The origin and the terminal vertices of a bond are specified by
functions o, t : B → V. In this case we say that bond b begins at o(b) and ends at t(b). The
set of incoming bonds at a vertex v is the set of all bonds b such that t(b) = v. Similarly,
we define the set of outgoing bonds at v. The orders of the set of incoming bonds, the
set of outgoing bonds at v are denoted by div, d

o
v. Certainly, we have div + dov = dv, the

degree of the vertex v.
Often a nondirectional graph G is considered as a digraph by assigning two bonds, b

and b̄ with opposite directions to each edge. The resulting digraph is denoted by G̃. The
digraph G̃ is symmetric in the sense that b ∈ B if and only if there exists b̄ ∈ B such that
o(b) = t(b̄) and o(b̄) = t(b). The bond b̄ is called the reversal of b.

A graph G is considered from two distinct perspectives. The first one is a standard
object in graph theory and combinatorics, where an edge represents a relation between
two vertices connected by the edge, rather than a physical link. In our context, G is
considered a one-dimensional complex, where an edge is treated as a one-dimensional
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segment or an interval. In this point of view, an edge can be thought of as a physical
wire, therefore the graph is now equipped with an additional metric structure.

A metric graph G is a directed graph, in which to each of bond b, an interval [0, Lb] of
length Lb is assigned, such that o(b), t(b) correspond to 0, Lb respectively. A coordinate
xb ∈ Ib = [0, Lb] is also assigned. This assignment endowed G with a metric structure, as
the distance between a pair of vertices can be defined to be the minimum length of the
path connecting them. With the coordinate function of each bond, the distance function
can be now extended to any point x, y of the graph, which are not necessarily vertices.

Let a complex-valued function f be defined on the metric graph G, and let fb = f |b
be the restriction of f to the bond b. Well-definedness of f on G forces the compatibility
condition, that is using slightly abused notation, for all the bond b incidence to vertex v,
the value of all the restriction fb(v) at the vertex are identical. For a finite metric graph
G, the Hilbert space L2(G) is defined to be the set of measurable functions f on G such
that

∥f∥2L2(G) :=
∑
b∈B

∥f∥2L2[0,Lb]
< ∞,

so that f ∈ L2(G) if and only if fb ∈ L2(Ib), for every bond b of G. The Sobolev space
H1(G) is defined to be the space of continuous functions f on G, such that fb ∈ H1(Ib),
for each bond b, and such that

∥f∥2H1(G) :=
∑
b∈B

∥fb∥2H1(Ib)
.

The Sobolev space Hk(G) of higher order (k > 1), is harder to define, due to a lack of
natural condition at vertices. Instead, we define

H̃k(G) =
⊕
b∈B

Hk(Ib),

that is the space of function f for which the restriction on each bond b belongs to Hk(Ib),
regardless the condition defined at vertices.

We now define the Laplace operator (or Laplacian)

A : f → −d2f

dx2
,

on the space
⊕

b∈B C∞
0 . We note that the operator has L2-closure whose domain is H̃2

0 (G).
Furthermore, the operator is symmetric. Furthermore, if we consider the eigenvalue
problem Af = λf ,

⟨Af, f⟩ = ⟨−f ′′, f⟩ = ⟨f ′, f ′⟩ = ∥f ′∥2L2(G) = ⟨λf, f⟩ = λ∥f∥2L2(G), (2.1)

and thus nonnegativity of the eigenvalue is concluded. Here ⟨·, ·⟩ is the L2-inner product,
in which integration by parts apply, and the boundary terms vanish due to the choice of
the domain of the Laplacian.

3. Eigenvalue invariance in star metric graphs

We let the Laplace operator acts on the space
⊕

C∞(Ij). At each the vertex v, let
the Neumann-Kirchhoff condition applies, that is

∑
j f

′
j(v) = 0. The sum is taken in

the set of indices j such that the bond Ij is incidence to the vertex v. This condition
represents the conservation of current at junctions, hence the term Kirchhoff. However,
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at peripheral vertices (boundary of the graph), the sum reduces to a single term only,
hence the Neumann boundary condition. Coupled with Neumann- Kirchhoff condition at
vertices, Laplace operator is also symmetric.

We now consider a simple example of spectral property of a compact star graph. Let
S̃ be a (metric) star graph with N bonds pointing towards the center C. With the hint
of nonnegativity of eigenvalues, we solve

−d2f

dx2
j

= k2f(xj),

with f ′
j(0j) = 0 for j = 1, ..., N , and

∑
j f

′
j(Lj) = 0. It is now standard, to have

fj(xj) = Aj cos(kxj) + Bj sin(kxj), j = 1, . . . , N . Upon substitution and imposing
Neumann-Kirchhoff condition,

A1 cos(kL1) = A2 cos(kL2) = · · · = AN cos(kLN ) = c (3.1)
N∑
j=1

Ajk sin(kLj) = 0 (3.2)

Assuming c ̸= 0, dividing the second equation by c, we conclude that k2 is an eigenvalue

if
∑N

j=1 tan(kLj) = 0. The case of c = 0 however, needs a separate consideration, see [1].

We contend that zero is an eigenvalue, since solving −d2f
dx2

j
= 0 on each bond, and using

the Neumann condition at peripheral vertices, and compatibility conditions at the center
yields

B1 = B2 = · · · = BN = c,

while Kirchhoff condition at the center is automatically satisfied. Therefore constant is
an eigenfunction related to the zero eigenvalues. This argument holds for the Laplace
operator with Neumann-Kirchhoff vertex condition in general metric graphs.

We establish the eigenvalue in variance property of the star metric graph over a change
of direction of bonds.

Proposition 3.1. The eigenvalue of the Laplacian on a star metric graph is invariant
over a change of direction of its bonds.

Proof. Let S̃N be a star metric graph with a given direction. Let S̃′
N be S̃N with one of

the bonds reversed, without loss of generality, let it be e1.

N

N

N
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By the positivity of the eigenvalue, we let λ = α2, for some α ∈ R. Then

f1 (x1) = A1 cos (αx1) +B1 sin (αx1) , x1 ∈ I1.

Reversing the direction yields change of parameter

x1 7→ L− x1,

and we let

F1 (x1) = A′
1 cos (α(L− x1)) +B′

1 sin (α(L− x1)) .

It is routine to check that

−F ′′
1 = αF1(x), f1(0) = F1(L), f1(L) = F1(0), f

′
1(0) = −F ′

1(L), f
′
1(L) = −F ′

1(0).

Therefore, starting from Neumann-Kirchhoff (NK) condition for S̃′
N ,

−F ′
1 (0) +

k∑
j=2

f ′
j (L) +

N∑
j=k+1

−f ′
j (0) = f ′

1 (L) +

k∑
j=2

f ′
j (L) +

N∑
j=k+1

−f ′
j (0)

=

k∑
j=1

f ′
j (L) +

N∑
j=k+1

−f ′
j (0) = 0,

which is the NK condition on S̃N , hence λ is also an eigenvalue for S̃′
N .

We utilize the following property of matrices to compute eigenvalues of S̃N later.

Theorem 3.2 (Zhang [7]).

Let M be a square (m+n)×(m+n) matrix, with decomposition M =

[
Am×m Bm×n

Cn×m Dn×n

]
.

If Dn×n is invertible,

det(M) = det(A−BD−1C) det(D).

The fact that the eigenvalue of the Laplacian on the star metric graph is independent
from the directions of the bonds, provides us some convenience in assuming a certain
direction. We now establish the invariance of the eigenvalues of the Laplacian of star
metric graph, over the number of bonds N .

Theorem 3.3. The eigenvalues set of the Laplacian on star metric graph S̃N , is inde-
pendent of the number of the bonds N , for N ≥ 2.

Proof. By eigenvalue invariance we can choose a set of directions for the bonds, in this
case, we choose the ones which are pointing toward the center. Apriorily, we let λ be
an eigenvalue and f = ⟨f1, . . . , fN ⟩ be the corresponding eigenfunction. Again, by the
positivity of eigenvalue, we let λ = α2. Then we have −f ′′

j = λfj , for j = 1, 2, ..., N , for

which the solution is fj(xj) = Aj cos(αxj) + Bj sin(αxj). For the star metric graph S̃N

the conditions on the vertices are the following.

f1(L) = f2(L) = ... = fN (L) (3.3)

f ′
1(L) + f ′

2(L) + ...+ f ′
N (L) = 0 (3.4)
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f ′
1(0) = f ′

2(0) = ... = f ′
N (0) = 0. (3.5)

The first one is the compatibility condition at the center, and the second one is the NK
condition also at the center. The third one is the Neumann condition at the peripheral
vertices. From the Neumann conditions at the periphery all Bj = 0, so now we have
fj(xj) = Aj cos(αxj). Upon substituting fj , j = 1, . . . , N into the above conditions
yields coefficient matrix with Aj , j = 1, . . . , N as the unknowns. We contend that the

determinant of the coefficient matrix for S̃N is (−1)N−1N sin(αL) cosN−1(αL). We start

with N = 2. The coefficient matrix for S̃2, is:

M2 =

[
sin(αL) sin(αL)
cos(αL) − cos(αL)

]
and the determinant is

det(M) = −2 sin(αL) cos(αL). (3.6)

The star metric graph S̃N can be constructed from attachment of N − 2 intervals with
Neumann conditions on both ends, to the center of S̃2. Then the coefficient matrix for
S̃N can be partitioned into

MN =

[
M2 Ec

Fc Dc

]
with 2× c matrix

Ec =

[
sin(αL) sin(αL) · · · sin(αL)

0 0 0 0

]
,

a c× 2 matrix

Fc =


cos(αL) 0
cos(αL) 0

: :
cos(αL) 0

 ,

and a c× c matrix

Dc = − cos(αL)Ic.

The matrix D is invertible, with D−1
c = − 1

cos(αL)
Ic, and hence

EcD
−1
c Fk = − 1

cos(αL)

[
α sin(αL) cos(αL) 0

0 0

]
=

[
−α sin(αL) 0

0 0

]
.

Therefore

M2 − EcD
−1
c Fc =

[
(1 + c) sin(αL) sin(αL)

cos(αL) − cos(αL)

]
,

and further det(M2 − EcD
−1
c Fc) = −(2 + c) sin(αL) cos(αL). Using Proposition 3.1,

det(MN ) = (−1)c+1(2 + c) sin(αL) cosc+1(αL). Since c = N − 2, then det(MN ) =
(−1)N−1N sin(αL) cosN−1(αL).

To obtain a nontrivial solution we set det(MN ) = 0. We have α =
(n− 1

2 )π

L
, or α =

nπ

L
.
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The eigenvalues are λ =

(
n− 1

2

)2

π2

L2
, and λ =

n2π2

L2
, for n ∈ Z.

The result is independent of the order of the equations used to derive the coefficient
matrix since |det(MN )| is unchanged.

4. The Case of Star Metric Multigraphs

A multigraph M̃G is a nonsimple graph such that there are edges having the same
initial-terminal vertices, ∂(ei) = ∂(ej). Geometrically speaking, in a multigraph, there
are pairs of vertices connected by more than one edge. Those edges are called parallel. A
star metric multigraph M̃SN is a multigraph such that if their parallel bonds are collapsed
into one edge, then the star metric graph S̃N is obtained. A star metric multigraphs are

denoted by M̃SN (ki)
N
i=1, with (ki)

N
i=1 is an N -tuple of positive integer, and ki denotes the

number of bonds parallel to ei, for every i = 1, 2, ..., N . Then the star metric multigraph

M̃SN has N +
N∑
i=1

ki bonds. The Figure 1 below is an example of M̃S3 (1, 1, 2).

N

N N

NK

e11 e12

e21
e22

e
31

e
32

e
33

Figure 1. Metric Multigraph M̃S3 (1, 1, 2).

We will compute the eigenvalues of the Laplacian on M̃S2 (k1, 0). The following the-

orem states that the eigenvalue of the Laplacian on M̃S2 (k1, 0) is independent of the
number of the parallel k1.

Theorem 4.1.
The eigenvalue of the Laplacian on M̃S2 (k1, 0) is invariant over the number of bonds
parallel to I1 at MS2 (k1, 0).

Theorem 4.1 is proved in a similar fashion as the previous one using the coefficient
matrix obtained from vertex conditions of the metric graph applied to the function f ;
that is starting from star graph S̃2 and adding repeatedly, on one parallel bond with a
Neumann condition, at a time.

(1) Star graph S̃2

First we will review S̃2 in the following direction as shown in Figure 2:
Assuming λ = α2, the solution to the Laplacian eigenvalue problem on S̃2 is

fj(xj) = Aj cos(αxj) +Bj sin(αxj)
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N N

NK

e1 e2

Figure 2. Metric star graph S̃2.

for j = 1, 2. Applying compatibility and NK conditions, a system of equations is
obtained with A1, A2, B1, B2 as the unknowns. The related coefficient matrix is

M2 =


0 1 0 0

− sin(αL) cos(αL) −sin(αL) cos(αL)
cos(αL) sin(αL) − cos(αL) − sin(αL)

0 0 0 1


so that,

det(M2) = −2 sin(αL) cos(αL). (4.1)

(2) Star metric multigraph M̃S2 (1, 0)

N N

NK

e1
e3

e2

Figure 3. Star Multigraph M̃S2 (1, 0)).

The coefficient matrix is obtained as follows:

M2(1) =


0 1 0 0 0 1

− sin(αL) cos(αL) −sin(αL) cos(αL) − sin(αL) cos(αL)
cos(αL) sin(αL) − cos(αL) − sin(αL) 0 0

0 0 0 1 0 0
1 0 0 0 −1 0

cos(αL) sin(αL) 0 0 − cos(αL) − sin(αL)

 .

Let

H =

[
0 1

− sin(αL) cos(αL)

]
, D =

[
−1 0

− cos(αL) − sin(αL)

]
then M2(1) can be written as:

M2(1) =

[
M2 C1

E1 D1

]
where M2 is the previous coefficient matrix on the metric graph S̃2, and

C1 =

[
H

02×2

]
, E1 =

[
−D 02×2

]
, D1 = D.
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Since the det(D1) = sin(αL), so D1 has an inverse. Consequently, according to
the Theorem 3.2,

det(M2(1)) = det(M2 − C1D
−1
1 E1) det(D1).

Next, we have

C1D
−1
1 E1 =

[
H

02×2

]
D−1

1

[
−D1 02×2

]
=

[
H

02×2

] [
−I2×2 02×2

]
=

[
−H 02×2

02×2 02×2

]
so that,

M2 − C1D
−1
1 E1 =


0 1 0 0

− sin(αL) cos(αL) − sin(αL) cos(αL)
cos(αL) sin(αL) − cos(αL) − sin(αL)

0 0 0 1



−


0 −1 0 0

− sin(αL) cos(αL) 0 0
0 0 0 0
0 0 0 0



=


0 2 0 0

−2 sin(αL) 2 cos(αL) −sin(αL) cos(αL)
cos(αL) sin(αL) − cos(αL) − sin(αL)

0 0 0 1

 .

Using the minor cofactor matrix, it is obtained

det(M2 − C1D
−1
1 E1) = −6 sin(αL) cos(αL)

and as a result

det(M2(1)) = det(M2 − C1D
−1
1 E1) det(D1)

= −6 sin2(αL) cos(αL). (4.2)

(3) Star Multigraph M̃S2 (2, 0)

We proceed with M̃S2 (2, 0) metric graph as the Figure 4. The coefficient matrix

N N

NK

I1
I3

I4

I2

Figure 4. Star Multigraph M̃S2 (2, 0)).

is obtained, namely M2(2). It can be written as:

M2(2) =

[
M2 C2

E2 D2

]
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where M2 is the coefficient matrix on the metric graph S̃2 and,

C2 =

[
H H

02×2 02×2

]
, E2 =

[
−D 02×2

−D 02×2

]
,

D2 =

[
D 02×2

02×2 D

]
.

Note that det(D2) = det(D) det(D) = sin2(kL) so D2 has an inverse. Using
Theorem 3.2

det(M2(2)) = det(M2 − C2D
−1
2 E2) det(D2).

Next

C2D
−1
2 E2 =

[
H H

02×2 02×2

] [
D−1 02×2

02×2 D−1

] [
−D 02×2

−D 02×2

]
=

[
H H

02×2 02×2

] [
−I2×2 02×2

−I2×2 02×2

]
=

[
−2H 02×2

02×2 02×2

]
so that,

M2 − C2D
−1
2 E2 =


0 1 0 0

− sin(αL) cos(αL) −sin(kL) cos(αL)
cos(αL) sin(αL) − cos(αL) − sin(αL)

0 0 0 1



−


0 −2 0 0

−2 sin(αL) 2 cos(αL) 0 0
0 0 0 0
0 0 0 0



=


0 3 0 0

−3 sin(αL) 3 cos(αL) −sin(kL) cos(αL)
cos(αL) sin(αL) − cos(αL) − sin(αL)

0 0 0 1


and hence

det(M2 − C2D
−1
2 E2) = −12 sin(αL) cos(αL).

Consequently,

det(M2(2)) = det(M2 − C2D
−1
2 E2) det(D2)

= −12 sin3(αL) cos(αL). (4.3)

From the process prescribed 1, 2, and 3, we conclude that if there are k1 parallel intervals
with I1, then the coefficient matrix M2(k1) can be written in the form:

M2(k1) =

[
M2 Ck1

Ek1
Dk1

]
where Ck1

is a matrix of size (4× 2k)

Ck1 =

[
H H ... H

02×2 02×2 ... 02×2

]
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and Ek1 is a matrix of size (2k × 4)

Ek1 =


−D 02×2

−D 02×2

: :
−D 02×2


while Dk1

is a matrix of size (2k × 2k) which can be written in the form

Dk1
=


D 02×2 ... 02×2

02×2 D 02×2

:
. . . :

02×2 02×2 ... D


with

H =

[
0 1

− sin(αL) cos(αL)

]
, D =

[
−1 0

− cos(αL) − sin(αL)

]
.

We observe that det(Dk1
) = det(D)k = sink(kL) and then:

Ck1
D−1

k1
Ek1

=

[
H H ... H

02×2 02×2 ... 02×2

]
D 02×2 ... 02×2

02×2 D 02×2

:
. . . :

02×2 02×2 ... D




−D 02×2

−D 02×2

: :
−D 02×2



=

[
H H ... H

02×2 02×2 ... 02×2

]
−I2×2 02×2

−I2×2 02×2

: :
−I2×2 02×2


=

[
−k1H 02×2

02×2 02×2

]
so that

M2−Ck1D
−1
k1

Ek1 =


0 1 + k1 0 0

−(1 + k1) sin(αL) (1 + k1) cos(αL) − sin(αL) cos(αL)
cos(αL) sin(αL) − cos(αL) − sin(αL)

0 0 0 1

 .

Using the minor cofactor matrix,

det(M2 − Ck1D
−1
k1

Ek1) = −(1 + k1)(2 + k1) sin(αL) cos(αL)

so that

det(Mk1
) = −(1 + k1)(2 + k1) sin

k1+1(αL) cos(αL).

Now we compute λ. To obtain a non-trivial solution f , the condition det(Mk1
) = 0 should

be satisfied. As a result

α =
nπ

L
or α =

(
n− 1

2

)
π

L
,

for n ∈ Z. Since λ = α2, we get λ =
n2π2

L2
or λ =

(
n− 1

2

)2
π2

L2
.

In a similar way, it can be proved that the eigenvalues of the Laplacian on M̃S2 (0, k2) is
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invariant over the number of intervals parallel to I2.

By invariance and symmetry, the eigenvalues at M̃S2(k1, 0) and M̃S2(0, k1) in any

direction are λ =

(
n− 1

2

)2

π2

L2
and λ =

n2π2

L2
, for n ∈ Z.

Corollary 4.2. Eigenvalues of M̃S2(0, k2) as well as M̃S2(k1, k2) are

λ =

(
n− 1

2

)2

π2

L2
and λ =

n2π2

L2
,

for n ∈ Z.

5. Concluding Remarks

We have computed the eigenvalues of the Laplacian on star metric graphs, as well as
star metric multigraphs. Invariant properties of the eigenvalues over the variations of
directions, as well as over the number of bonds of the star graphs enable one to compute
the eigenvalue using the simplest structure,i.e. S̃2. However the method we employ so far,
is not able to reveal the multiplicities of the eigenvalues since we derive the eigenvalues
from the determinant of the coefficient matrix, that is an equation in trigonometric terms
sin, cos, and not from the characteristic polynomial. Therefore the spectral studies carried
out using this method are not complete yet. A further study of pushing this method to
obtain information on how large the eigenspaces are is an interesting further exploration.
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