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1. Introduction

Multidual numbers have been introduced for the first time by F. Messelmi in the ref-
erence [16] as the generalization of dual numbers in higher dimensions. The idea is to
consider a unit number satisfying εn+1 = 0 and create the (n+ 1)−dimensional asso-
ciative, commutative, and unitary generalized Clifford algebra generated by ε, said to
be multidual algebra. The author studied the function of multidual variables. In de-
tail, the formulas of Cauchy-Riemann were generalized and some results regarding the
continuation of multidual functions have been also shown. Moreover, in the reference
[12] the author has generalized multidual numbers over the set of complex numbers by
introducing the concept of multidual complex numbers and he has studied the multidual
complex functions and their inverses. In-depth, algebraic properties of the multidual alge-
bra were elaborated in the refernces [16–18]. Differential calculus of multidual functions
was the subject of the paper [15]. Indeed, the author introduces the notions of anti-
hyperholomorphic functions and co-hyperholomorphic functions as well as the concept of
generalized Dirac operators and he established many interesting results. Furthermore,
multidual analysis have found various applications in technological fields, particularly
in Mechanics, Robotics, Aeronotics and Electronics, see for more details the references
[3–11].
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The main purpose of the present paper is to introduce the concept of log−series and
log−functions. The paper is organized as follows. We will focus in the second section on
recalling the basic properties of multidual analysis, notably hyperholomorphic functions,
see the reference [16]. The third section aims to generalize the factorial for multidual
integers and we define the new concepts of log−series and log−functions. We will re-
strict ourselves in this work to the study of the elementary log−functions that represent
a particular extension of the classical elementary real functions. We show in addition
that we can use the elementary log−functions to provide the expansion of some special
functions written as integrals involving the n−th power of logarithmic function making
use of harmonic numbers.

2. Preliminaries

A multidual number z is defined according to work of F. Messelmi [16] as an ordered
(n+ 1)−tuple of real numbers (x0, x1, ..., xn) associated with the real unit 1 and the
powers of the multidual unit ε, where ε is an (n+ 1)−nilpotent number i.e. εn+1 = 0
and εi ̸= 0 for i = 1, ..., n. Indeed, a multidual number is usually denoted in the form

z =

n∑
i=0

xiε
i.

for which, we admit that ε0 = 1. The set of multidual numbers is denonted by Dn and
given by

Dn =

{
z =

n∑
i=0

xiε
i | xi ∈ R where εn+1 = 0 and εi ̸= 0 for i = 1, ..., n

}
.

If z =
n∑

i=0

xiε
i is a multidual number, we will denote by real (z) the real part of z given

by

real (z) = x0.

The multidual numbers form a commutative ring with characteristic 0. Moreover, the
inherited multiplication gives the multidual numbers the structure of (n+ 1)−dimensional
generalized Clifford Algebra. For n = 1, D1 represents the Clifford algebra of dual num-
bers, see for more details regarding dual numbers the references [2, 12, 14]. In abstract
algebra terms, the multidual ring can be obtained as the quotient of the polynomial ring
R [X] by the ideal generated by the polynomial Xn+1, i.e.

Dn ≃ R [X]

⟨Xn+1⟩
.

It is also important to point out that every multidual number possess a matrix rep-
resentation that can be formulated as follows. Let us denote by Gn+1 (R) the subset of
Mn+1 (R) given by

Gn+1 (R) = {A = (xij) ∈ Mn+1 (R) | xij = 0 if i < j

and xi+1,j+1 = xij if j ≤ i ≤ n} .
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So, an element A of Gn+1 (R) can be written as

A =


a0 0 . . . 0
a1 a0 . . . 0
...

. . .
. . .

...
an . . . a1 a0

 .

It is clear that Gn+1 (R) is a subring ofMn+1 (R) and it has also a structure of (n+ 1)−
dimensional associative, commutative, and unitary algebra. If a0 ̸= 0, Gn+1 becomes a
field. In particular, the set Gn+1 (R) can be also seen as a subgroup of GL (n+ 1) .

There are many ways to choose the multidual unit number ε. The basic example can
be given by the matrix

ε =


0 0 . . . 0

1 0
. . . 0

...
. . .

. . . 0
0 . . . 1 0

 .

Introducing now the following mapping

R : Dn −→ Gn+1 (R) ,

R
(

n∑
i=0

xiε
i

)
= A =


x0 0 . . . 0
x1 x0 . . . 0
...

. . .
. . .

...
xn . . . x1 x0

 .

The result below shows the relationship between the sets Dn and Gn+1 (R) , [16].

Proposition 2.1. R is an isomorphism of algebras.

If z is a multidual number, the conjugate of z, denoted by z̄, is the multidual number
given by

zz̄ = detR (z) = (real (z))
n+1

.

Hence, z =
n∑

i=0

xiε
i has a unique conjugate if and only if real (z) = x0 ̸= 0. If x0 = 0, the

number
n∑

i=1

xiε
i is a divisor of zero in the ring Dn. Denote by D the set of zero divisors of

the ring Dn, i.e.

D =

{
n∑

i=1

xiε
i | xi ∈ R

}
.

For the sequel we admit that Dn is endowed with the usual topology of Rn+1. We recall
now, according to the work [16], some concepts and results regarding multidual functions.

Let Ω be an open subset of Dn, z =
n∑

i=0

xiε
i ∈ Ω and f : Ω −→ Dn a multidual function.

The Cauchy-Riemann conditions can be generalized for multidual function as follows.
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Proposition 2.2. Let f be a multidual function in Ω ⊂ Dn, which can be written in
terms of its real and multidual parts as

f (z) =

n∑
i=0

fi (x0, x1, . . . , xn) ε
i.

and suppose that the partial derivatives of f exist. Then,
1. f is hyperholomorphic in Ω if and only if the following formulas hold

∂fi
∂xj

=
∂fi−j

∂x0
if j ≤ i,

∂fi
∂xj

= 0 if j > i.

2. f is hyperholomorphic in Ω if and only if its partial derivatives satisfy

∂f

∂xj
= εj

∂f

∂x0
, j = 0, . . . , n.

This allows us to deduce in particluar that if the function f is hyperholomorphic then

df

dz
=

∂f

∂x0
.

A multidual function defined in Ω ⊂ Dn is said to be homogeneous if

f (real (z)) ∈ R.

The following proposition ensures that every regular real function can be extended to the
algebra of multidual numbers.

Proposition 2.3 (Continuation of real functions). Let f : O −→ R be a real function,
where O is an open connected domain of R.

1. Suppose that f ∈ Cn+1 (O) . Then, there exists a unique homogeneous hyperholo-

morphic multidual function f̃ : ΩO ⊂ Dn −→ Dn satisfying

f̃ (x0) = f (x0) ∀x0 ∈ O,

where

ΩO =

{
z =

n∑
i=1

xiε
i ∈ Dn | x0 ∈ O

}
.

2. For i = 1, . . . , n and j = 1, . . . , i, there exists real polynomials Pij ∈ R [x1, . . . , xi]
where deg (Pij) ≤ i, such that

f̃ (z) = f (x0) +

n∑
i=1

i∑
j=1

Pij (x1, . . . , xi) f
(i−j+1) (x0) ε

i. (2.1)

If in addition f ∈ Cq (O) , q ≥ n + 1, then f̃ ∈ Cq−n−1 (ΩO) . In Particular, if f ∈
C∞ (O) , then f̃ ∈ C∞ (ΩO) , we say in such case that f is an analytic function in ΩO.

In the following proposition, we give some properties regarding the generator polyno-
mials Pij appearing in formula (2.1).
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Proposition 2.4. The generator polynomials verify the following statements:
Pij = 0 ∀i = 1, . . . , n and j = i+ 1, . . . , n,
∂Pij

∂xk
= 0 ∀i = 1, . . . , n, k = 1, . . . , i and j = 1, . . . , k − 1,

∂Pij

∂xk
= Pi−k,j−k+1 ∀i = 2, . . . , n, k = 1, . . . , i− 1 and j = k, . . . , i− 1,

Pii (x1, . . . , xi) = xi ∀i = 1, . . . , n.

Furthermore, according to the work [18], the set of multidual integers Zn (ε) is defined
as

Zn (ε) =

{
m =

n∑
i=0

miε
i | mi ∈ Z

}
.

The set Zn (ε) can be seen as a generated Z−module having (1, ε, . . . , εn) as a system
of generators. It is also important to note that Zn (ε) can be also obtained as the quotient
of the polynomial ring Z [X] by the ideal generated by the polynomial Xn+1, i.e.

Zn (ε) ≃
Z [X]

⟨Xn+1⟩
.

The set of the zero divisors of the ring Zn (ε) denoted by Dn (ε) coincides with the ideal
generated by ε. This means that,

Dn (ε) = εZn (ε) =

{
m =

n∑
i=1

miε
i

}
.

A multidual integer m =
n∑

i=1

miε
i is said to be positive if m0 > 0. The set of positive

multidual integers is given by

Z+
n (ε) =

{
m =

n∑
i=0

miε
i ∈ Zn (ε) | m0 > 0

}
, (2.2)

forms a commutative monoid under multiplication. Furthermore, for every x ∈ R − Z−,
we define the p−th generalized harmonic number, denoted by Hp,q (x) , see [1], by

Hp,q (x) =

p∑
r=0

1

(x+ r)
q .

In order to simplify the notations, we will write from now on Hp,q = Hp,q (1).

3. log−Series, log−Functions, and Applications

We start this section by suggesting in generalization of the factorial map for positive
multidual integers. To do this, let us introduce the following definition.

Definition 3.1. The factorial of the integer m =
n∑

i=0

miε
i ∈ Z+

n (ε) is defined by the

formula

m! =

m0∏
r=1

(
r +

n∑
i=1

miε
i

)
. (3.1)
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In the following proposition we give an expression of the multidual factorial using the
generator polynomials.

Proposition 3.2. Let m =
n∑

i=0

miε
i ∈ Z+

n (ε) . We have

m! = m0!

1 +

n∑
i=1

i∑
j=1

Pij (Y1 (m0) , . . . , Yi (m0)) ε
i

 , (3.2)

where

Yi (m0) =

m0∑
r=1

i∑
j=1

(−1)
i−j

(i− j)!Pij

(m1

r
, . . . ,

mi

r

)
. (3.3)

Proof. Let m =
n∑

i=0

miε
i ∈ Z+

n (ε) , in view of (3.1) we can write

m! = m0!

m0∏
r=1

(
1 +

n∑
i=1

mi

r
εi

)

= m0!

m0∏
r=1

e

n∑
i=1

yriε
i

,

where

e

n∑
i=1

yriε
i

= 1 +

n∑
i=1

mi

r
εi.

Thus

m! = m0!e

m0∑
r=1

n∑
i=1

yriε
i

.

Let us denote by Yi (m0) the sum Yi (m0) =
m0∑
r=1

yri, one finds

m! = m0!

1 +

n∑
i=1

i∑
j=1

Pij (Y1 (m0) , . . . , Yi (m0)) ε
i

 .

Moreover, it is clear that
n∑

i=1

Yi (m0) ε
i =

m0∑
r=1

log

(
1 +

n∑
i=1

mi

r
εi

)
.

We can deduce, thanks to Proposition 2.3, that

n∑
i=1

Yi (m0) ε
i =

m0∑
r=1

n∑
i=1

i∑
j=1

Pij

(m1

r
, . . . ,

mi

r

)
log(i−j+1) (1) εi.

Consequently

Yi (m0) =

m0∑
r=1

i∑
j=1

(−1)
i−j

(i− j)!Pij

(m1

r
, . . . ,

mi

r

)
.

This achieves us the proof.
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Our goal now is to introduce the new concept of log−series.

Definition 3.3. A log−series of the variable x is an infinite series of the form

+∞∑
m0=1

(
n∑

i=0

ai (m0, . . . ,mn) ε
i

)
x

n∑
i=0

miε
i

. (3.4)

Here, the multidual number
n∑

i=0

ai (m0, . . . ,mn) ε
i represents the coefficient of the term

x

n∑
i=0

miε
i

, where ai is a sequence of the natural numbers (m0, . . . ,mn) . Further, the
log−series (3.4) can be also written as

x

n∑
i=1

miε
i +∞∑
m0=1

(
n∑

i=0

ai (m0, . . . ,mn) ε
i

)
xm0 , (3.5)

So, it converges if and only the below real power series converge simultaneously

+∞∑
m0=1

ai (m0, . . . ,mn)x
m0 , i = 0, . . . , n. (3.6)

Moreover, it is well known, see [16], that the term x

n∑
i=0

miε
i

is only defined for x ≥ 0 such
that

x

n∑
i=1

miε
i

=


0 if x = 0,

1 +
n∑

i=1

i∑
j=1

Pij (m1 log x, . . . ,mi log x) ε
i if x > 0.

(3.7)

Denote now by Ri, i = 0, . . . , n, the radius of convergence of the real power series (3.6),
respectively. Obviously, the log−series (3.4) converges for every x ∈ [0, R[ , where

R = min
i=1,...,n

Ri.

On the other hand, by utilizing (3.5) and (3.7), we get

x

n∑
i=1

miε
i +∞∑
m0=1

(
n∑

i=0

ai (m0, . . . ,mn) ε
i

)
xm0

=

1 +

n∑
i=1

i∑
j=1

Pij (m1 log x, ...,mi log x) ε
i

 +∞∑
m0=1

(
n∑

i=0

ai (m0, ...,mn) ε
i

)
xm0 .

Hence, the fact that Pij are real polynomials allows us to obtain

lim
x−→0

+∞∑
m0=1

(
n∑

i=0

ai (m0, ...,mn) ε
i

)
x

n∑
i=0

miε
i

= 0.

We conclude that if the log−series (3.4) converges then its limit is a continuous function
at 0. If the log−series converges, its sum is said to be a log−function. We focus ourselves
to the study of some elementary log−functions and their applications.
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3.1. log−Exponential Function

Given m =
n∑

i=0

miε
i ∈ Z+

n (ε) . Let us consider the log−series given by

1 +

+∞∑
m0=1

x

n∑
i=0

miε
i(

n∑
i=0

miεi
)
!

. (3.8)

It is easy to verify that the log−series converges for every x ∈ [0, +∞[ . The sum of
the series denoted by expm1,...,mn

is called the log−exponential function. The following
result suggest us an explicit expression of the log−exponential function.

Theorem 3.4. The log−exponential function expm1,...,mn
can be written for every x ∈

[0,+∞[

expm1,...,mn
(x) = ex

1 +

n∑
i=1

i∑
j=1

x∫
0

e−sPij (m1 log s, . . . ,mi log s) dsε
i

 (3.9)

Proof. We get by differentiating the log−series (3.8) and using the properties of the
multidual factorial

d expm1,...,mn
(x)

dx
= expm1,...,mn

(x) + x

n∑
i=1

miε
i

− 1.

This leads to

d expm1,...,mn
(x)

dx
= expm1,...,mn

(x) +

n∑
i=1

i∑
j=1

Pij (m1 log x, ...,mi log x) ε
i.

Consequently, the result can be easily achieved making use of the standard argument
regarding ordinary differential equations.

One deduces that the formula (3.9) can be also written as

expm1,...,mn
(x) =

x∫
0

s

n∑
i=1

miε
i

ex−sds, ∀x ∈ [0, +∞[ . (3.10)

An interesting application of the log−exponential function will be subject of the following
result.

Theorem 3.5. For every x ∈ [0,+∞[ , the following formulas hold

x∫
0

ex−s log s ds = (ex − 1) log x−
+∞∑

m0=1

Hm0−1,1

m0!
xm0
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and for i = 2, . . . , n,

i∑
j=1

x∫
0

ex−sPij (m1 log s, . . . ,mi log s) ds

=

+∞∑
m0=1

i∑
j=1

Pij (m1 log x− Y1 (m0) , . . . ,mi log x− Yi (m0))
xm0

m0!
,

where Yi (m0) , i = 1, . . . , n, are given by (3.3).

Proof. The function expm1,...,mn
(x) can be written making use of (3.2)

expm1,...,mn
(x) = 1 +

+∞∑
m0=1

x

n∑
i=0

miε
i

m0!

(
1 +

n∑
i=1

i∑
j=1

Pij (Y1 (m0) , . . . , Yi (m0)) εi

) .

Since 1 +
n∑

i=1

i∑
j=1

Pij (Y1 (m0) , . . . , Yi (m0)) ε
i = e

n∑
i=1

Yi(m0)ε
i

, we can infer

expm1,...,mn
(x) = 1 +

+∞∑
m0=1

x

n∑
i=1

miε
i

e

n∑
i=1

−Yi(m0)ε
i xm0

m0!

= 1 +

+∞∑
m0=1

e

n∑
i=1

(mi log x−Yi(m0))ε
i xm0

m0!
.

Thus, it follows that

expm1,...,mn
(x) = ex+

+∞∑
m0=1

 n∑
i=1

i∑
j=1

Pij (m1 log x− Y1 (m0) , . . . ,mi log x− Yi (m0)) ε
i

 xm0

m0!
. (3.11)

Consequently, the proof follows by by combining (3.10) and (3.11).

Example 3.6. The case n = 2. Here, we have

expm1,,m2
(x) = 1 + xm1ε+m2ε

2
+∞∑

m0=1

xm0

(m0 +m1ε+m2ε2)!
. (3.12)

Moreover, from Proposition 3.2, the multidual factorial can be evaluated for n = 2 as
follows.

(
m0 +m1ε+m2ε

2
)
! = m0!e

m1

m0∑
r=1

1
r ε+

(
m2

m0∑
r=1

1
r−

m2
1

2

m0∑
r=1

1
r2

)
ε2

= m0!

[
1 +m1Hm0−1,1ε+

(
m2

1

2

(
H2

m0−1,1 −Hm0−1,2

)
+m2Hm0−1,1

)
ε2
]
.
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Hence, we can infer

xm1ε+m2ε
2

(m0 +m1ε+m2ε2)!
=

1

m0!

(
1 +m1 log xε+

(
m2

1

2
log x+m2 log x

)
ε2
)
×[

1−m1Hm0−1,1ε+

(
m2

1

2

(
H2

m0−1,1 +Hm0−1,2

)
−m2Hm0−1,1

)
ε2
]

=
1

m0!
(1 +m1 (log x−Hm0−1,1) ε)+

1

m0!

(
m2

1

2

(
log x− 2 log xHm0−1,1 +H2

m0−1,1 +Hm0−1,2

)
+

m2 (log x−Hm0−1,1)) ε
2.

This yields using (3.9) and (3.12)

ex

1 +

x∫
0

e−sm1 log sdsε+

x∫
0

e−s

(
m2

1

2
log2 s+m2 log s

)
dsε2


= 1 +

+∞∑
m0=1

(1 +m1 (log x+Hm0−1,1)) ε
xm0

m0!
+

+∞∑
m0=1

(
m2

1

2

(
log x− 2 log xHm0−1,1 +H2

m0−1,1 +Hm0−1,2

)
+

m2 (log x−Hm0−1,1) ε
2
) xm0

m0!
.

Consequently, the following formulas hold

x∫
0

ex−s log s ds = (ex − 1) log x−
+∞∑

m0=1

Hm0−1,1
xm0

m0!
.

x∫
0

ex−s log2 s ds = (ex − 1) log x− 2 log x
+∞∑

m0=1

Hm0−1,1

m0!
xm0+

+∞∑
m0=1

H2
m0−1,1 +Hm0−1,2

m0!
xm0 .

3.2. log−Trigonometric Functions

Let m =
n∑

i=0

miε
i ∈ Z+

n (ε) . Consider the multidual log−series given respectively by

1 +
+∞∑

m0=1
(−1)

m0 x
2m0+

n∑
i=1

miε
i(

2m0+
n∑

i=1
miεi

)
!

and

+∞∑
m0=0

(−1)
m0 x

2m0+1+
n∑

i=1
miε

i(
2m0+1+

n∑
i=1

miεi
)
!

.
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The both series converge for every x ∈ [0,+∞[ . Their sums are denoted respectively by
cosm1,...,mn and sinm1,...,mn called log−cosinus and log−sinus functions. The following
result suggests some properties.

Theorem 3.7. The log−trigonometric functions cosm1,...,mn and sinm1,...,mn verify the
differential equations

d2 cosm1,...,mn (x)

dx2
+ cosm1,...,mn

(x) = −
n∑

i=1

i∑
j=1

Pij (m1 log x, ...,mi log x) ε
i.

(3.13)

d cosm1,...,mn (x)

dx
= − sinm1,...,mn (x) . (3.14)

d sinm1,...,mn (x)

dx
= cosm1,...,mn

(x) +

n∑
i=1

i∑
j=1

Pij (m1 log x, ...,mi log x) ε
i.

Proof. It is straightforward to find by computing the first and second derivative of the
function cosm1,...,mn and using the properties of the multidual factorial

d cosm1,...,mn
(x)

dx
= − sinm1,...,mn

(x) and

d2 cosm1,...,mn (x)

dx2
= − cosm1,...,mn (x)− x

n∑
i=1

miε
i

+ 1.

These also give

d sinm1,...,mn
(x)

dx
= −d2 cosm1,...,mn

(x)

dx2
= cosm1,...,mn

(x) + x

n∑
i=1

miε
i

− 1.

Thus, the desired result follows.

The subject of the following Theorem is to determinate explicit expression of the
functions cosm1,...,mn

and sinm1,...,mn
(x) .

Theorem 3.8. The log−trigonometric functions cosm1,...,mn
and sinm1,...,mn

(x) verify
the below formulas

cosm1,...,mn
(x) = cosx+

n∑
i=1

i∑
j=1

cosx

x∫
0

sin sPij (m1 log s, ...,mi log s) ds

− sinx

x∫
0

cos sPij (m1 log s, ...,mi log s) ds

 εi.
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sinm1,...,mn (x) = sinx+

n∑
i=1

i∑
j=1

sinx

x∫
0

sin sPij (m1 log s, ...,mi log s) ds

+cosx

x∫
0

cos sPij (m1 log s, ...,mi log s) ds

 εi.

Proof. Setting cosm1,...,mn
(x) = y in the ordinary differential equation (3.13). It is well

known that the general solution of the homogeneous corresponding equation is

y = c1 cosx+ c2 sinx.

Using the method of variation of parameters, the particular solution is formed by replacing
in the general solution the parameters c1 and c2 by unknown functions c1 (x) and c2 (x) .
So the particular, the solution can be written as

yp = c1 (x) cosx+ c2 (x) sinx.

It is reasonable to impose, after computing the derivative of the particular solution

c′1 (x) cosx+ c′2 (x) sinx = 0.

Differentiating this equation and substituting the obtained one in the particular solution
we get

−c′1 (x) sinx+ c′2 (x) cosx = −
n∑

i=1

i∑
j=1

Pij (m1 log x, . . . ,mi log x) ε
i.

Solving the above system allows as to determinate the solution of the inhomogeneous
equation. Indeed, we have

cosm1,...,mn
(x) = cosx+

n∑
i=1

i∑
j=1

cosx

x∫
0

sin sPij (m1 log s, ...,mi log s) ds

− sinx

x∫
0

cos sPij (m1 log s, ...,mi log s) ds

 εi + c1 cosx+ c2 sinx.

Combining the previous equation with equation (3.14), we also get

sinm1,...,mn (x) = sinx+

n∑
i=1

i∑
j=1

sinx

x∫
0

sin sPij (m1 log s, ...,mi log s) ds

+cosx

x∫
0

cos sPij (m1 log s, ...,mi log s) ds

 εi − c1 sinx+ c2 cosx.

By the definition of the function cosm1,...,mn
and sinm1,...,mn

, we have

cosm1,...,mn (0) = 1 and sinm1,...,mn (0) = 0.

So, we find c1 = c2 = 0 which permits us to conclude the proof.
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It is straightforward to show that the previous formulas can be also written in compact
form 

cosm1,...,mn
(x) = 1 +

x∫
0

s

n∑
i=1

miε
i

sin (s− x) ds,

sinm1,...,mn
(x) =

x∫
0

s

n∑
i=1

miε
i

cos (s− x) ds.

(3.15)

We provide in the following an application of the log−trigonometric functions.

Theorem 3.9. For all x ∈ [0,+∞[ and i = 1, . . . , n, the following formulas hold

i∑
j=1

x∫
0

sin (s− x)Pij (m1 log s, . . . ,mi log s) ds

=

+∞∑
m0=1

i∑
j=1

(−1)
m0 Pij (m1 log x− Y1 (m0) , . . . ,mi log x− Yi (m0))

x2m0

(2m0)!
.

and

i∑
j=1

x∫
0

cos (s− x)Pij (m1 log s, . . . ,mi log s) ds

=

+∞∑
m0=0

i∑
j=1

(−1)
m0 Pij (m1 log x− Y1 (m0) , . . . ,mi log x− Yi (m0))

x2m0+1

(2m0 + 1)!
.

Proof. Using (3.2), the functions cosm1,...,mn(x) and sinm1,...,mn(x) can be written as

cosm1,...,mn
(x) = 1 +

+∞∑
m0=1

(−1)
m0

x
2m0+

n∑
i=1

miε
i

(2m0)!e

n∑
i=1

Yi(2m0)εi
,

and

sinm1,...,mn
(x) =

+∞∑
m0=0

(−1)
m0

x
2m0+

n∑
i=1

miε
i

(2m0 + 1)!e

n∑
i=1

Yi(2m0+1)εi
.

Thus we find

cosm1,...,mn
(x) = 1 +

+∞∑
m0=1

(−1)
m0 e

n∑
i=1

(mi log x−Yi(2m0))ε
i x2m0

(2m0)!
,

= cosx+

+∞∑
m0=1

(−1)
m0

 n∑
i=1

i∑
j=1

Pij (m1 log x− Y1 (2m0)

, . . . ,mi log x− Yi (2m0)) ε
i
) x2m0

(2m0)!
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and

sinm1,...,mn
(x)

=

+∞∑
m0=0

(−1)
m0 e

n∑
i=1

(mi log x−Yi(2m0+1))εi x2m0+1

(2m0 + 1)!

= sinx+

+∞∑
m0=0

(−1)
m0

 n∑
i=1

i∑
j=1

Pij (m1 log x− Y1 (2m0 + 1) , . . . ,

mi log x− Yi (2m0 + 1)) εi
) x2m0+1

(2m0 + 1)!
.

Consequently, the proof follows keeping in mind the formula (3.15).

Example 3.10. The case n = 2. Here, we have
cosm1,m2

(x) = 1 +
+∞∑

m0=1
(−1)

m0 x2m0+m1ε+m2ε2

(2m0+m1ε+m2ε2)!
,

and

sinm1,m2
(x) =

+∞∑
m0=0

(−1)
m0 x2m0+1+m1ε+m2ε2

(2m0+1+m1ε+m2ε2)!
.

So, one can easily find

cosm1,m2
(x)

= 1 + x2m0+m1ε+m2ε
2

+∞∑
m0=1

(−1)
m0

x2m0

(2m0)!
×[

1−m1H2m0−1,1ε+

(
m2

1

2

(
H2

2m0−1,1 +H2m0−1,2

)
−m2H2m0−10,1

)
ε2
]
,

and

sinm1,m2
(x)

= x2m0+1+m1ε+m2ε
2

+∞∑
m0=0

(−1)
m0

x2m0+1

(2m0 + 1)!
×[

1−m1H2m0,1ε+

(
m2

1

2

(
H2

2m0,1 +H2m0,2

)
−m2H2m0,1

)
ε2
]
.

Hence, taking into account (3.15), we obtain the following formulas
x∫

0

sin (s− x) log sds = (cosx− 1) log x−
+∞∑

m0=1

(−1)
m0

H2m0−1,1

(2m0)!
x2m0 ,

x∫
0

sin (s− x) log2 sds = (cosx− 1) log2 x− 2 log x

+∞∑
m0=1

(−1)
m0

H2m0−1,1

(2m0)!
x2m0

+

+∞∑
m0=1

(−1)
m0

H2
2m0−1,1 +H2m0−1,2

(2m0)!
x2m0 ,
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x∫
0

cos (s− x) log sds = sinx log x−
+∞∑

m0=0

(−1)
m0

H2m0,1

(2m0 + 1)!
x2m0+1,

x∫
0

cos (s− x) log2 sds = sinx log2 x− 2 log x

+∞∑
m0=0

(−1)
m0

H2m0,1

(2m0 + 1)!
x2m0+1

+
+∞∑

m0=0

(−1)
m0

H2
2m0,1 (1) +H2m0,2 (1)

(2m0 + 1)!
x2m0+1.

3.3. log−Hyperbolic Functions

Let m =
n∑

i=0

miε
i ∈ Z+

n (ε) . Considering the log−series given respectively by

1 +
+∞∑

m0=1

x
2m0+

n∑
i=0

miε
i(

2m0+
n∑

i=0
miεi

)
!
,

and

+∞∑
m0=0

x
2m0+1+

n∑
i=0

miε
i(

2m0+1+
n∑

i=0
miεi

)
!
.

These two series converge for every x ∈ [0,+∞[ . Their sums are denoted respectively
by coshm1,...,mn

and sinhm1,...,mn
called respectively log−hyperbolic cosinus and log-

hyperbolic sinus functions.

Theorem 3.11. The following formulas hold

d2 coshm1,...,mn
(x)

dx2
− coshm1,...,mn

(x) =

n∑
i=1

i∑
j=1

Pij (m1 log x, . . . ,mi log x) ε
i.

d coshm1,...,mn
(x)

dx
= sinhm1,...,mn (x) . (3.16)

d sinhm1,...,mn
(x)

dx
= coshm1,...,mn

(x) +

n∑
i=1

i∑
j=1

Pij (m1 log x, . . . ,mi log x) ε
i.

Proof. Making use of the properties of the multidual factorial, we can easily obtain, by
differentiating the function coshm1,...,mn

(x)

d coshm1,...,mn
(x)

dx
= sinhm1,...,mn

(x)

and

d2 coshm1,...,mn
(x)

dx2
= coshm1,...,mn

(x) + x

n∑
i=1

miε
i

− 1.

Thus, we get

d sinhm1,...,mn
(x)

dx
=

d2 coshm1,...,mn
(x)

dx2
= coshm1,...,mn

(x) + x

n∑
i=1

miε
i

− 1,
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which achieves the proof.

The goal of the following result is to determinate the explicit expression of the functions
coshm1,...,mn

and sinhm1,...,mn
.

Theorem 3.12. The log−hyperbolic functions coshm1,...,mn
and sinhm1,...,mn

are given
explicitely by:

coshm1,...,mn
(x) = coshx+

n∑
i=1

i∑
j=1

− coshx

x∫
0

sinh sPij (m1 log s, ...,mi log s) ds

+sinhx

x∫
0

cosh sPij (m1 log s, ...,mi log s) ds

 εi. (3.17)

sinhm1,...,mn (x) = sinhx+

n∑
i=1

i∑
j=1

− sinhx

x∫
0

sinh sPij (m1 log s, ...,mi log s) ds

+coshx

x∫
0

cosh sPij (m1 log s, ...,mi log s) ds

 εi.

Proof. Let us denote by y the solution of the ODE (3.17). The general solution of the
homogeneous corresponding equation is given by

y = c1 coshx+ c2 sinhx.

To determinate the particular solution of the inhomogeneous equation we use the method
variation of parameters. Indeed, the particular solution is assumed to be of the form

yp = c1 (x) coshx+ c2 (x) sinhx,

where c1 (x) and c2 (x) are unknown functions. We choose the following
c′1 (x) coshx+ c′2 (x) sinhx = 0,

c′1 (x) sinhx+ c′2 (x) coshx =
n∑

i=1

i∑
j=1

Pij (m1 log x, . . . ,mi log x) ε
i.

So, by solving the above system we deduce that the solution of the inhomogeneous equa-
tion can be represented by the function

coshm1,...,mn
(x) = coshx+

n∑
i=1

i∑
j=1

− coshx

x∫
0

sinh sPij (m1 log s, ...,mi log s) ds

+sinhx

x∫
0

cosh sPij (m1 log s, ...,mi log s) ds

 εi + c1 coshx+ c2 sinhx.
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Differentiating this equation, we get, keeping in mind (3.16)

sinhm1,...,mn
(x) = sinhx+

n∑
i=1

i∑
j=1

− sinhx

x∫
0

sinh sPij (m1 log s, ...,mi log s) ds

+coshx

x∫
0

cosh sPij (m1 log s, ...,mi log s) ds

 εi + c1 sinhx+ c2 coshx.

It is clear that

coshm1,...,mn
(0) = 1 and sinhm1,...,mn

(0) = 0.

It follows that c1 = c2 = 0. Consequently, the Theorem is proved.

It is straightforward to show that the previous formulas can be written in compact
form 

coshm1,...,mn (x) = 1 +
x∫
0

s

n∑
i=1

miε
i

sinh (x− s) ds,

sinhm1,...,mn
(x) =

x∫
0

s

n∑
i=1

miε
i

cosh (x− s) ds.

An application of the log−hyperbolic functions in the field of special functions will be
given in the following assertion.

Theorem 3.13. For all x ∈ [0,+∞[ and i = 1, . . . , n, the following formulas hold.

i∑
j=1

x∫
0

sinh (x− s)Pij (m1 log s, ...,mi log s) ds

=

+∞∑
m0=1

i∑
j=1

Pij (m1 log x− Y1 (m0) , ...,mi log x− Yi (m0))
x2m0

(2m0)!
,

i∑
j=1

x∫
0

cosh (x− s)Pij (m1 log s, ...,mi log s) ds

=

+∞∑
m0=0

i∑
j=1

Pij (m1 log x− Y1 (m0) , ...,mi log x− Yi (m0))
x2m0+1

(2m0 + 1)!
.

Proof. The functions coshm1,...,mn and sinhm1,...,mn (x) can be written making use (3.2)

coshm1,...,mn (x) = 1 +

+∞∑
m0=1

x
2m0+

n∑
i=1

miε
i

(2m0)!e

n∑
i=1

Yi(2m0)εi

and

sinhm1,...,mn
(x) =

+∞∑
m0=0

x
2m0+

n∑
i=1

miε
i

(2m0 + 1)!e

n∑
i=1

Yi(2m0+1)εi
.
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Thus we find

coshm1,...,mn (x) = 1 +

+∞∑
m0=1

e

n∑
i=1

(mi log x−Yi(2m0))ε
i x2m0

(2m0)!
,

= coshx+

+∞∑
m0=1

 n∑
i=1

i∑
j=1

Pij (m1 log x− Y1 (2m0)

, . . . ,mi log x− Yi (2m0)) ε
i
) x2m0

(2m0)!
,

and

sinhm1,...,mn
(x) =

+∞∑
m0=0

e

n∑
i=1

(mi log x−Yi(2m0+1))εi x2m0+1

(2m0 + 1)!

= sinx+

+∞∑
m0=0

 n∑
i=1

i∑
j=1

Pij (m1 log x− Y1 (2m0 + 1) , . . . ,

mi log x− Yi (2m0 + 1)) εi
) x2m0+1

(2m0 + 1)!
.

These yield exploiting

1 +

x∫
0

1 +

n∑
i=1

i∑
j=1

Pij (m1 log x, ...,mi log x) ε
i

 sinh (x− s) ds

=

+∞∑
m0=1

 n∑
i=1

i∑
j=1

Pij (m1 log x− Y1 (2m0) , ...,mi log x− Yi (2m0)) ε
i

 x2m0

(2m0)!
,

and
x∫

0

1 +

n∑
i=1

i∑
j=1

Pij (m1 log x, ...,mi log x) ε
i

 cosh (x− s) ds

=

+∞∑
m0=0

 n∑
i=1

i∑
j=1

Pij (m1 log x− Y1 (2m0 + 1) , . . . ,

mi log x− Yi (2m0 + 1)) εi
) x2m0+1

(2m0 + 1)!
,

which completes the proof.

Example 3.14. The case n = 2. Here, we have
coshm1,m2

(x) = 1 +
+∞∑

m0=1

x2m0+m1ε+m2ε2

(2m0+m1ε+m2ε2)!
,

sinhm1,m2
(x) =

+∞∑
m0=0

x2m0+1+m1ε+m2ε2

(2m0+1+m1ε+m2ε2)!
.
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Then, one finds

coshm1,m2 (x) = 1 + x2m0+m1ε+m2ε
2

+∞∑
m0=1

x2m0

(2m0)!
×[

1−m1H2m0−1,1ε+

(
m2

1

2

(
H2

2m0−1,1 +H2m0−1,2

)
−m2H2m0−10,1

)
ε2
]

and

sinhm1,m2 (x) = x2m0+1+m1ε+m2ε
2

+∞∑
m0=0

x2m0+1

(2m0 + 1)!
×[

1−m1H2m0,1ε+

(
m2

1

2

(
H2

2m0,1 +H2m0,2

)
−m2H2m0,1

)
ε2
]
.

Hence, keeping in mind Theorem 3.13, we obtain the following formulas

x∫
0

sinh (s− x) log sds = (coshx− 1) log x−
+∞∑

m0=1

H2m0−1,1

(2m0)!
x2m0 ,

x∫
0

sinh (s− x) log2 sds = (coshx− 1) log2 x− 2 log x

+∞∑
m0=1

H2m0−1,1

(2m0)!
x2m0 ,

+

+∞∑
m0=1

H2
2m0−1,1 +H2m0−1,2

(2m0)!
x2m0 ,

x∫
0

cosh (s− x) log sds = sinhx log x−
+∞∑

m0=0

H2m0,1

(2m0 + 1)!
x2m0+1,

x∫
0

cosh (s− x) log2 sds = sinhx log2 x− 2 log x

+∞∑
m0=0

H2m0,1

(2m0 + 1)!
x2m0+1,

+

+∞∑
m0=0

H2
2m0,1 +H2m0,2

(2m0 + 1)!
x2m0+1.

4. Conclusion

In this paper, we introduced the so-called log−series. The idea was to consider a
real power series and replace the natural powers with multidual integers and the coeffi-
cient by a multidual sequence. The sum of a log−serie is said to be log−function. We
have studied some elementary log−function, namely the log−exponential function, the
log−trigonometric functions and the log−hyperbolic functions, as generalization of the
real elementary functions. It has been shown that we can use log−functions and tools of
multidual analysis to obtain expansion of some special functions in series involving n−th
power of the Logarithmic function and Harmonic numbers.
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