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1. Introduction

Multidual numbers have been introduced for the first time by F. Messelmi in the ref-
erence [16] as the generalization of dual numbers in higher dimensions. The idea is to
consider a unit number satisfying e"™! = 0 and create the (n + 1) —dimensional asso-
ciative, commutative, and unitary generalized Clifford algebra generated by ¢, said to
be multidual algebra. The author studied the function of multidual variables. In de-
tail, the formulas of Cauchy-Riemann were generalized and some results regarding the
continuation of multidual functions have been also shown. Moreover, in the reference
[12] the author has generalized multidual numbers over the set of complex numbers by
introducing the concept of multidual complex numbers and he has studied the multidual
complex functions and their inverses. In-depth, algebraic properties of the multidual alge-
bra were elaborated in the refernces [16—18]. Differential calculus of multidual functions
was the subject of the paper [15]. Indeed, the author introduces the notions of anti-
hyperholomorphic functions and co-hyperholomorphic functions as well as the concept of
generalized Dirac operators and he established many interesting results. Furthermore,
multidual analysis have found various applications in technological fields, particularly
in Mechanics, Robotics, Aeronotics and Electronics, see for more details the references

[3-11].
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The main purpose of the present paper is to introduce the concept of log —series and
log —functions. The paper is organized as follows. We will focus in the second section on
recalling the basic properties of multidual analysis, notably hyperholomorphic functions,
see the reference [16]. The third section aims to generalize the factorial for multidual
integers and we define the new concepts of log —series and log —functions. We will re-
strict ourselves in this work to the study of the elementary log —functions that represent
a particular extension of the classical elementary real functions. We show in addition
that we can use the elementary log —functions to provide the expansion of some special
functions written as integrals involving the n—th power of logarithmic function making
use of harmonic numbers.

2. Preliminaries

A multidual number z is defined according to work of F. Messelmi [16] as an ordered
(n+ 1) —tuple of real numbers (xg,x1,...,x,) associated with the real unit 1 and the
powers of the multidual unit e, where ¢ is an (n + 1) —nilpotent number i.e. "™t = 0
and €' # 0 for i = 1,...,n. Indeed, a multidual number is usually denoted in the form

n
z= E e’
i=0

for which, we admit that €® = 1. The set of multidual numbers is denonted by I,, and
given by

D, = {Z = insi | 2; € R where €"™ =0 and £’ # 0 for i = 1,...,n} .
i=0

n )
If z = > x;e* is a multidual number, we will denote by real (z) the real part of z given

i=0
by
real (z) = .

The multidual numbers form a commutative ring with characteristic 0. Moreover, the
inherited multiplication gives the multidual numbers the structure of (n + 1) —dimensional
generalized Clifford Algebra. For n = 1, D; represents the Clifford algebra of dual num-
bers, see for more details regarding dual numbers the references [2, 12, 14]. In abstract
algebra terms, the multidual ring can be obtained as the quotient of the polynomial ring
R [X] by the ideal generated by the polynomial X"*! i.e.

R[X]
D,, ~ W

It is also important to point out that every multidual number possess a matrix rep-
resentation that can be formulated as follows. Let us denote by G,,1+1 (R) the subset of
M1 (R) given by

Gnt1 (R) ={A = (zi5) € Mpy1 (R) |25 =01if i < j

and Tit1,5+1 = T4j lf] S ) S n}
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So, an element A of G,,41 (R) can be written as

Qg 0 0

ay agp 0
A=

2% ay ao

It is clear that G,,11 (R) is a subring of M,, 1 (R) and it has also a structure of (n + 1) —
dimensional associative, commutative, and unitary algebra. If ag # 0, G, 41 becomes a
field. In particular, the set G,41 (R) can be also seen as a subgroup of GL (n +1).

There are many ways to choose the multidual unit number €. The basic example can
be given by the matrix

0 0 0

1 0 0
E =

: . 0

0O ... 1 0

Introducing now the following mapping

R:D, — gn—i—l (R) ,

n . r1r Xy ... 0
R <Z £L'2'€z> =A=
=0
Tn X1 ZTo

The result below shows the relationship between the sets D,, and G, 11 (R), [16].
Proposition 2.1. R is an isomorphism of algebras.
If z is a multidual number, the conjugate of z, denoted by Zz, is the multidual number
given by
2z = det R (2) = (real (2))" 1.
n )
Hence, z = > ;" has a unique conjugate if and only if real (z) = zg # 0. If g = 0, the
i=0
n .
number Y x;e" is a divisor of zero in the ring D,,. Denote by D the set of zero divisors of

i=1
the ring D,,, i.e.

D= {inei | z; € IR{}.
i=1

For the sequel we admit that I, is endowed with the usual topology of R"*!. We recall
now, according to the work [16], some concepts and results regarding multidual functions.

Let Q be an open subset of D,,, z = > x;e* € Qand f : Q — D,, a multidual function.
i=0
The Cauchy-Riemann conditions can be generalized for multidual function as follows.
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Proposition 2.2. Let f be a multidual function in Q C D,, which can be written in
terms of its real and multidual parts as

f(z)= Zf’ (x0,T1,.. ., 2n)E"
i=0

and suppose that the partial derivatives of f exist. Then,
1. f is hyperholomorphic in ) if and only if the following formulas hold

of; _ 0fiy
ox; Oxg
8fz =0 if j>1
8$j o J '

if J<4,

2. f is hyperholomorphic in Q if and only if its partial derivatives satisfy
of _ o

ij N 8x0’

This allows us to deduce in particluar that if the function f is hyperholomorphic then

a _ of

dz ~ Oxo

A multidual function defined in Q C D, is said to be homogeneous if
f (real (2)) € R.

The following proposition ensures that every regular real function can be extended to the
algebra of multidual numbers.

Proposition 2.3 (Continuation of real functions). Let f : O — R be a real function,
where O is an open connected domain of R.

1. Suppose that f € C"T1(O). Then, there exists a unique homogeneous hyperholo-
morphic multidual function f: Qo C D,, — Dy, satisfying

f(.To) = f (Io) VIO € O,
where
QOZ{Z:ZJ%E’LED»”|ZCOEO}
=1

2. Fori=1,...,n and j = 1,...,1, there ezists real polynomials P;; € Rx1,...,x;]
where deg (P;;) < i, such that

']?(Z) = f (l’o) + ZZ PU (.’I}l, ey IZ) f(i_j+1) (.’L'()) Ei. (21)

i=1 j=1

If in addition f € C1(0O), ¢ > n+ 1, then fecan-t (Qo). In Particular, if f €
C>®(0), then f € C* (o), we say in such case that [ is an analytic function in Qo.

In the following proposition, we give some properties regarding the generator polyno-
mials P;; appearing in formula (2.1).
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Proposition 2.4. The generator polynomials verify the following statements:

P;j=0Vi=1,...,nand j=1i+1,...,n,
9Pu — 0 Vi=1,...,n, k=1,...,iandj=1,...,k—1,

Oxy
Do =P kjk+1 Vi=2,...,n, k=1,...;i—landj=k,...,1 -1,

Pz-i(xl,.‘.,xi):xi V2:1,,n

Furthermore, according to the work [18], the set of multidual integers Z,, (¢) is defined
as

Zn (€) = {m:Zmisi | m; EZ}.
i=0

The set Z,, (¢) can be seen as a generated Z—module having (1,¢,...,e™) as a system
of generators. It is also important to note that Z,, (¢) can be also obtained as the quotient
of the polynomial ring Z [X] by the ideal generated by the polynomial X" i.e.

Z[X]
<Xn+1> :

The set of the zero divisors of the ring Z, (¢) denoted by D,, (¢) coincides with the ideal
generated by . This means that,

D, (¢) =¢eZy (e) = {m = zn:migl}.

n .
A multidual integer m = > m;e® is said to be positive if mg > 0. The set of positive
i=1
multidual integers is given by

Zy, (&) ~

Z) (e) = {m = Zmisi € Ly (g) | mo > O} , (2.2)

forms a commutative monoid under multiplication. Furthermore, for every x € R — Z~,

we define the p—th generalized harmonic number, denoted by H, , (x), see [1], by
N1
H = E —.
p.q (%) e (z+7)7

In order to simplify the notations, we will write from now on H, , = H, 4 (1).

3. log —Series, log —Functions, and Applications

We start this section by suggesting in generalization of the factorial map for positive
multidual integers. To do this, let us introduce the following definition.

Definition 3.1. The factorial of the integer m = > m;e' € Z} () is defined by the
i=0

7=
formula

m! = ﬁ (r + imﬁ’) . (3.1)

r=1
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In the following proposition we give an expression of the multidual factorial using the

generator polynomials.

n .
Proposition 3.2. Let m = Y m;e' € Z} (¢). We have
i=0

m':mo' 1—|—ZZP”(Y1(m0),,YZ(mO))€l 5
=1 j=1

where
me
E ZJZ—])'P”(—,...,J).
r r
1j=1

n )
Proof. Let m = Y mue' € Z} (), in view of (3.1) we can write
i=0

mo' ﬁ (1 + Z >
mo

’V'L
Yr 15
__nmiIIel

T=

where
n
Z Yri€ " m; i
el =1+ E —
A r
=1
Thus
mo m
2 yrig

Let us denote by Y; (mg) the sum Y; (mg) = ZO Yri, one finds

r=1

m! =mg! |1 +Zzpij (Y1 (mo), ..., Yi (mg)) &'
=1 j=1

Moreover, it is clear that

ZY (mo) ' _f:log(HZ : >

r=1

We can deduce thanks to Proposmon 2.3, that

ZY mo) e’ = Z Z Z ( ,%) log* =9+ D (1) .

r=11i=1 j=1

Consequently

ZZ ’L—j)'P (%,,%)

r=1j=1

This achieves us the proof.
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Our goal now is to introduce the new concept of log —series.
Definition 3.3. A log —series of the variable x is an infinite series of the form
= n . Z mie’
Z Zai (mo,...,mp)e" | xi= (3.4)
mo=1 \i=0

n

Here, the multidual number Y a; (my, ..., m,) &’ represents the coefficient of the term
i=0
i miei .
=0 , where a; is a sequence of the natural numbers (mq,...,m,). Further, the

log —series (3.4) can be also written as

a:f;ml Z (Zaz mo,...,m )&?)zm“, (3.5)

mo=1

So, it converges if and only the below real power series converge simultaneously

“+o0
Zai(mo,...,mn)zmo,i:O,...,n. (3.6)
mo=1
i m;€e
Moreover, it is well known, see [10], that the term xi=0 is only defined for > 0 such
that
& e 0 ifx=0,
i=1 = no 4 .
v 1+ Z Z i (maloga, ... ,mylogx)e if z > 0. (3.7)
Denote now by R;, 7 =0,...,n, the radius of convergence of the real power series (3.6),
respectively. Obviously, the log —series (3.4) converges for every = € [0, R[, where
R= _g{lin R;.
On the other hand, by utilizing (3.5) and (3.7), we get
z"': i 400
Ti=1 Z <Zal mg,...,m )5)9&’”0
mo= 1
=1+ Z ZPM (mylogz,...,m;log x) € Z (Z a; (mg, ..., my) €' ) ™o,
i=1 j=1 mo=1

Hence, the fact that P;; are real polynomials allows us to obtain

. Z m;e
li =
Py <Zal mo, ..., M )E> - 0
mo= 1
We conclude that if the log —series (3.4) converges then its limit is a continuous function
at 0. If the log —series converges, its sum is said to be a log —function. We focus ourselves
to the study of some elementary log —functions and their applications.
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3.1. log —Exponential Function

n .
Given m = > m;e' € Z} (¢) . Let us consider the log —series given by
i=0

> miet

1+moz1 (2m61>

It is easy to verify that the log —series converges for every x € [0, + oo[. The sum of
the series denoted by exp,, ., is called the log —exponential function. The following
result suggest us an explicit expression of the log —exponential function.

(3.8)

Theorem 3.4. The log —exponential function exp,,, can be written for every x €

[0, 4+00[

eeey My,

eXPyy, m, () =€" | 1+ Z Z/ Pij (mqlogs,...,m;log s) dsc’ (3.9)

21]1

Proof. We get by differentiating the log —series (3.8) and using the properties of the
multidual factorial

dex x S myet
pmlé""m” (2) = exPy,,. . m, (T) F zizlm —1.
- oM

This leads to

dex x L
pml(’i“"m”( ) = eXPyy, ., () + E E P;; (mylogz,...,m;logx) e’
- e
i=1 j=1

Consequently, the result can be easily achieved making use of the standard argument
regarding ordinary differential equations. ]

One deduces that the formula (3.9) can be also written as

y; i miei’
€XPyy, m, (X)) = [ =1 e"%ds, Vzel0, +oof. (3.10)
0
An interesting application of the log —exponential function will be subject of the following
result.

Theorem 3.5. For every x € [0,4+00], the following formulas hold

[ X Hypy 11
z=s ds = z _ 1)1 _ mo—41, mo

/e ogsds= (e ) log x E gl x

0

m0:1
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and fori=2,...,n

Z/ P;j (mylogs,...,m;logs)ds

J= 10
i -
= Z ZPij(mllogx—Yl (mo),...,m;logz —Y; (mg)) —

b
m()!
mo=1 j=1

where Y; (mg), i =1,...,n, are given by (3.3).

Proof. The function exp,,, ,, (z) can be written making use of (3.2)

iy xigomﬁl
CXPmy,...;mn (l‘) =1+ Z n 4 .
M=l ( > E 5 (Y1 (mo) ..., Yi (mo)) 5i>
i=1j=1
, E Yi(mo)e' .
Since 1 + Z Z Pi; (Y1 (mg),...,Yi(mg))e" =ei= , we can infer

i=1j=

Z )

:1—|—Zel oy

XDy, .. om, (T) = €74

“+o0 n 7 . 2mo

Z ZZPU (milogx — Y1 (mo),...,m;logz —Y; (mg)) oo (3.11)

mo=1 \ i=1 j=1 mo:
Consequently, the proof follows by by combining (3.10) and (3.11). n

Example 3.6. The case n = 2. Here, we have

+oo mo

XDy (1) = 1 a1t 37

m():l

. 3.12
mo + mye + moe?)! ( )

Moreover, from Proposition 3.2, the multidual factorial can be evaluated for n = 2 as
follows.

N B S IR
2 ' ' my 2. T ma s 5 5 )€
(mo + mie + mae ) =mgle =t

2
= mg! |l —|—m1Hm0_171€ + ( 5 (H72n0 1,1 Hmo—L?) +m2Hm0—1,1> 62:| .
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Hence, we can infer

2
mie+moe
xm 2

= (1rmn miy 1 2
(mo + mae + moe?)! - mo! +malogze + 2 08T+ Mz log | €7 ) X
2

m
{1 —miHpy-11€ + (1 (

5 Hyzno_l,l + Hing—1,2) — mszo—l,l) 52]

1
= m—O'(l—le (logx—Hmo_l,l)s)+

1 m?
miol (21 (logx —2logxHypy—1,1 + H72no—171 + Hmo—172) +
2

mo (logz — Hppy—11)) €.

This yields using (3.9) and (3.12)

xr x 2
e’ |1+ /e_sml log sdse + /e_s <Tr2L110g2 s+ mo log s) dse?
0 0
+oo mo
=1+ szl (14+my (logz + Himg—11)) Emo! +
mo=

+oo 2
m
Z (21 (logz — 2log xHyny—1,1 + H72n0—1,1 + Hing—1,2) +

’n’LQ:l

™o

mo (logz — Hppg—1,1) 52) o
0-

Consequently, the following formulas hold

T +oo

v logs ds = (" — 1)1 H e
e Plogsds = (e —1)logx — Z mo—117 -
0 m0:1
/e’“ﬂ_slog2 sds=(e"—1)logx — 2logx Z Lﬁ’lmmo—&-
5 mo—1 mo-

Jio HZ g t Hno-12

‘ .
mo—1 mo-

3.2. log —Trigonometric Functions
Let m = Y mye® € Z; (¢). Consider the multidual log —series given respectively by
i=0

n
2mg+ >, m,e*
i=1

+oo m 2
I+ ¥ (-)™ A

mo=1 (2m0+z misi)!
i=1
and
+o0 2mo 1t 35 myet
i=1

> (-1

mo=0 (2m0+1+2 miai)!
i=1
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The both series converge for every x € [0, +oo[. Their sums are denoted respectively by
COSpmy.....m,, and siy,, . called log —cosinus and log —sinus functions. The following
result suggests some properties.

Theorem 3.7. The log —trigonometric functions coSp, ... m, ond sily,, . m, verify the

differential equations

n

d2 COSmy....m., (T)

n 7
+ COSmy,...om,, (T) = — ZZPM (mylogz,...,m;log x) €.

dx? £ £
1=1 j=1
(3.13)
d m m .
cos 1dx . () = — i, (2). (3.14)
dsing,,...,m, () S i
T = CO8my (x) + ZZPU (mqlogx,...,m;logx)e".
i=1 j=1

Proof. 1t is straightforward to find by computing the first and second derivative of the
function cosyy, ,...,m, and using the properties of the multidual factorial

n

d
L0 @) _ ., ., (2) and

dx
d? cos T & et
mczv.é;mn ( ) — COSmlm..,mn ({L’) — qpi=1 + 1
These also give
dSin €T d2 cos x i m’isi
ml;l.‘;mn ( ) - mcll!%Q’mn ( ) = COS'rnl,..A,'ran (3)) + xi=1 —1.
Thus, the desired result follows. i

The subject of the following Theorem is to determinate explicit expression of the
functions cosp, ... m,, and sing,, . m, (z).

n

Theorem 3.8. The log —trigonometric functions coSpm,....m, nd Sily,, . m. (z) verify

the below formulas

n

. x
n 1
COSp,....m,, (T) = cosx + ZZ cosx/sin sP;j (mqlogs,...,m;logs)ds
i=1 j=1 4
x
- sinx/cos sP;; (mylogs, ...,m;logs)ds | .
0
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T

n K2
Sy, . m, (€) =sinx + Z Z sinx/sin sP;; (m1logs,...,m;log s) ds
i=1 j=1 A
T
+cosx/cossPij (mqlogs,...,m;log s)ds et
0

Proof. Setting cosp, .....m, () = y in the ordinary differential equation (3.13). It is well
known that the general solution of the homogeneous corresponding equation is

Y = c1Co8ST + coysinx.

Using the method of variation of parameters, the particular solution is formed by replacing
in the general solution the parameters ¢; and ¢p by unknown functions ¢; (z) and ¢ ().
So the particular, the solution can be written as

yp =1 () cosx + c2 (z) sinz.
It is reasonable to impose, after computing the derivative of the particular solution
¢y (z) cosx + ¢ (z) sinz = 0.

Differentiating this equation and substituting the obtained one in the particular solution
we get

—c} (z)sinz + ¢ (z) cosx = — Z ZPU (miloga,...,m;logx)e’.
i=1 j=1

Solving the above system allows as to determinate the solution of the inhomogeneous
equation. Indeed, we have

n A z
COSpy....m,, () = cosx + ZZ cosx/sin sP;j (mylogs,...,m;logs)ds
i=1j=1 4
xr
—sinz / cos sP;j (mylogs,...,m;logs)ds | € + ¢y cosx + cosin .

0

Combining the previous equation with equation (3.14), we also get

n 2 z
iy, . m, (€) =sinx + Z Z sinx/sin sP;j (mqlogs,...,m;logs)ds
i=1 j=1 )
xr
+cosx/cos sP;j (mqlogs,...,m;log s)ds e — ¢y sinz + ¢ cosz.
0

By the definition of the function cosy,, ... m, and sing,,, . m,, we have

COSpmy...my, (0) =1 and  sing, .. m, (0)=0.

So, we find ¢; = ¢o = 0 which permits us to conclude the proof. [
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It is straightforward to show that the previous formulas can be also written in compact
form

T Xn: m;e’
COSpmy ... mn (T) =1+ [si=1 sin (s — z) ds,
2 (3.15)
z E ’I’?’LiE1
iy, . m, () = [ 5= cos (s — x) ds.
0
We provide in the following an application of the log —trigonometric functions.
Theorem 3.9. For all x € [0,4+00[ and i = 1,...,n, the following formulas hold
i T
Z/sin(s —z) P;j (mylogs,...,m;logs)ds
Jj=1 0
+oo 1 2mo
= Z Z (_1)m0 Pij (m1 logaj — Y1 (mo) [ 117} lOgSU — Y; (mo)) .
(2mo)!
m():l ]:1
and
Z/cos(s —x) P;j (mylogs,...,m;logs)ds
j=1 0
400 i $2m0+1
— mo - _ X _ " -
= Z Z (=)™ P;j (milogz — Y1 (mo) ,...,milogz —Y; (myg)) @mo £ 1)1

moZO j:l
Proof. Using (3.2), the functions cosy,, ... m, (¥) and sing,, .. m, () can be written as

n )
2mo+ > mse’
x i=1

“+o0
Sy omy, (@) =14 D (=)™

n )
mo=1 >° Yi(2mo)e?

(2mg)lei=1

and

« 2mo+ 35 mae’

Sty o (1) = 3 ()" y

o (2mo + Dl I

Thus we find
3 mo i (milog z—Yi(2mo))e’ 210

e m%zzl 0T (2mp)!’

(71)m0 Z Z Pij (m1 10g(13 — Yl (Qmo)

mo=1 i=1 j=1

I
8
8
+

]

meo

oo milogz — Y (2mg)) €)
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and

3 (milog w—Y; (2mo+1))e’  g2mo+l
i=1

- 2 e g+ 1)

= sinz + Z (—1)™° ZZPU (mylogz — Yy (2mo +1),...,

mo=0 i=1j=1
x2m0+1
(2mg + 1)!.

Consequently, the proof follows keeping in mind the formula (3.15).

m; logz — Y; (2mg + 1)) &)

Example 3.10. The case n = 2. Here, we have

p2mo+mie+moe?

+oo m
COSmy,mo (LE) =1+ Z (_]‘) ’ (

(2mo+mietmae2)!’
m[):l
and
+oo 2 2
. _ mo T mg+1l+mietmage
SMmy ,ma ($> - Z (_1) (2mo+1+mietmae?)!”
mo=0
So, one can easily find
COS"llme (‘T)
2 2 X x2mo
_ mo+mie+maoe mo
=1+z E (-1 om )'><
mo:l 0J:
m3

1-— mlHQmo_ng + ( B

2 2
(HQmO_Ll + Homg-12) — m2H2m0—10,1> € } )
and

iy, msy ()

+oo 22mo+1
_ x2mo+1+m16+m252 2 : (—1 mo %
|
= (2mg + 1)!

m2
[1 —miHomy 1€ + (21 (H§m0,1 + Hopmg2) — m2H2m0,1> 52] .

Hence, taking into account (3.15), we obtain the following formulas

T

“+o0
Hopmy—
/sin (s — z)logsds = (cosz — 1) logx — Z (—1)™° ﬁ:ﬁmo,
0 mo=1
/sin (s — ) log® sds = (cosz — 1)log® z — 2log Z (—1)™° 2m7°71"1x2m0
) mo=1 (27’)’10)

(2’[’)’10)' ’

mo=1
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x 400
m H m
/cos (s — x)log sds = sinzlogx — ZO (—1)™° ﬁf’”““,
0 mo=

= H.
2mo, 1
/cos s —x)log? sds = sinxlog? z — 2log x E ymo =m0 _g2mo+l
0

|
mo—0 (2m0 + 1)
+
+ f (_1)m0 H22m0,1 (1) + H2m072 (1>$2m0+1.
om0 (2m0 + 1)'

3.3. log —Hyperbolic Functions
n .
Let m = Y me* € Z} (¢) . Considering the log —series given respectively by
i=0

2n10+ Z my et

1+Z
e

b
mo=1 2mo+z mlsl)'
1=0
and
+oo 2mo+1+ Z m;et

i=

mo=0 <2m0+1+ > mﬁ;") !
=0

These two series converge for every x € [0,4o00[. Their sums are denoted respectively
by coshy,,.....m, and sinh,,, . ., called respectively log —hyperbolic cosinus and log-
hyperbolic sinus functions.

Theorem 3.11. The following formulas hold

d2 hm m <
cos d;2 - (7) —coshm, ... m, () = ; 1 jg 1 P;; (mylogz,...,m;logx)e’
COS le . (2) sinh ;. (7). (3.16)
dsinh,,
st zla: . (@) = coshy,, ... )+ E E PZJ mq logz,...,m;logz)e"

=1 j=1

Proof. Making use of the properties of the multidual factorial, we can easily obtain, by
differentiating the function cosh ;.. m.,, (x)

d cosh My My (l‘)

= Sinh mi,...,Mn (x)

dx
and
d? h En: mie
COS rg;jé..,mn (x) _ COShml,...,mn (’1}) + gi=t —1
Thus, we get
: 2 N i
dsinhy,, . m, ()  d°coshy,  m, (x) coshm, . (1) + xi;mzs 1

dx n dx?
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which achieves the proof. [

The goal of the following result is to determinate the explicit expression of the functions
cosh . ,...m, and sinhy,, . m

Theorem 3.12. The log —hyperbolic functions cosh y,,
explicitely by:

;m, are gZ’UETL

,,,,,

.....

coshyn, . ...m, () = coshx+ZZ —coshx/smhsP,-j (mq log s, ...,m;log s) ds
=1 j=1

+sinha:/cosh sP;; (mylogs, ...,m;logs)ds | €. (3.17)
0

sinhy,, . m., () —Slnhm—i—zz —smhx/smhsPij (mq log s, ...,m;log s) ds
=1 j=1

xr
+coshx/costhj (mylogs,...,m;logs)ds | €.
0

Proof. Let us denote by y the solution of the ODE (3.17). The general solution of the
homogeneous corresponding equation is given by

y = c1 cosh x 4 ¢y sinh x.

To determinate the particular solution of the inhomogeneous equation we use the method
variation of parameters. Indeed, the particular solution is assumed to be of the form

yp = ¢1 (x) coshx + ¢o (x) sinh z,
where ¢; () and ¢o (z) are unknown functions. We choose the following

¢y (z)coshx + ¢ (z) sinhx = 0,

¢ (z)sinhx + ¢ (x)coshe = > > Pjj(mylogx,...,m;logx)e
i=1j=1

So, by solving the above system we deduce that the solution of the inhomogeneous equa-
tion can be represented by the function

coshyn,,....m, () = coshz + Z Z - coshx/smhsPij (mqlogs,...,m;log s) ds

i=1 j=1
xT
—l—sinhx/costh-j (mqlogs,...,m;logs)ds e' + ¢1 coshx + ¢o sinh .
0
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Differentiating this equation, we get, keeping in mind (3.16)

i=1 j=1

n 7 z
sinhyn,,..m, () =sinhz + Z Z —sinh / sinh sP;; (mqlogs, ..., m; log s) ds
0

+ cosh x / cosh s P;; (mq log s, ...,m;log s) ds e' 4+ ¢y sinhx + ¢5 cosh .
0
It is clear that

coshyn,,..m, (0) =1 and sinh,, . m, (0)=0.

It follows that ¢; = co = 0. Consequently, the Theorem is proved. n

It is straightforward to show that the previous formulas can be written in compact
form

COShml,...,mn (gy) =14 f5i11 m;
0

T i m; @
sinhy,, . m, (¥) = [s=! * cosh (x — s)ds.
0

sinh (x — s) ds,

An application of the log —hyperbolic functions in the field of special functions will be
given in the following assertion.

Theorem 3.13. For all x € [0,4+00[ and i = 1,...,n, the following formulas hold.

Z/sinh (x —s) P;j (mylogs, ...,m;log s) ds

j=1 0
+oo i r2mo
= > > Py(milogz —Yi(my),...,milogz — Y; (mg)) Gmo)l’
mo=1j=1
Z/cosh (x — s) P;j (m1logs,...,m;log s) ds
j=1 0
“+o0 [ $2m0+1
- Z Z Pi; (mylogz — Yy (mo) , ..., m; logz — Y; (mg)) T

mg:O j:l
Proof. The functions coshy,, .. m, and sinh,,, .. (x) can be written making use (3.2)

n X
2mo+ Yy mye’
T i=1

+oo
coshp, ... m,, (x) =1+ Z

=y 3 Yi(2mo)et

2m0)!€i:1
and

2mo+ 3 m;et
+o00 .Z:l

Sinhml,...,m71 (‘T) = Z : :

m():O (

S Vi(2mo41)ei
2mg + 1)lei=1 e
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Thus we find

n .
IR S mitogz—vi(2me))et g2mo
=1

1 i
T 2mo)!’

mo=1

coshyn,,...m., ()

n %

+oo
= coshz + Z ZZPH (mqlogz — Y7 (2myg)

mo=1 \i=1 j=1

X I,Q’ITL()
ey T logx -Y (Qmo)) 61) W7
and
I i (m;log z—Y;(2mo+1))e?  g2mo+1
sinhy,, . m, () = ei=1 —_
o (Zmo + 1)'
mo—o
“+o0 n 1

:sinx+z ZZPij(mllogx7Y1(2m0+1),...,

mo=0 \i=1 j=1

. x2m0+1
i1 -Y; (2 1))e') —.
m; log x (2mgo + ))E)(2m0+1)!
These yield exploiting
z n %
1+ / 1+ ZZP” (m1logx,...,milogx) e’ | sinh (z — s) ds

0 i=1 j=1
+o00 no 1 T2mo

= Z ZZPM (m1 logx—Yl (2m0),...,mi logx—Yi(Qmo)) Ei (2m0)

mo=1 \i=1 j=1

and

T

/ 1+ Z ZPU (mylogz,...,m;logx) e’ | cosh (x — s)ds

) i=1 j=1

+o00 n i

= Z ZZPU(mllogx—Y1(2m0+1),...,

mo=0 \i=1 j=1
x2m0+1

milogx _)/Z (2m0 + 1))5 ) m,

which completes the proof.

Example 3.14. The case n = 2. Here, we have

+oo 2m 2
_ T otmiet+moge
COSthmz (J,‘) =1+ Z (2mo+mie+moe?)l?
mo=1
too z2mo+1ltmyetmoe?

Slnhmhmz (1") = ZO (2mo+1+mietmoe2)!l”
mo=
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Then, one finds

2 = x2mo
COShm17m2 ((E) -1 +x2mo+m1s+m2£ § :

m0:1

2
m
{1 —miHomy—1,1€ + ( 1 (Hgmo 1,1+ Hamg—1 2) - m2H2m0—10,1> 52}

and

+oo p2mo+1

—— X
méo (2mg + 1)!

. 2
Slnhml,m2 (1‘) _ w2m0+1+m15+m26

2

m
|:1 — mlHQmOJ(f + <21 (H22m071 + HQmO,Q) — m2H2m0,1> 52:| .

Hence, keeping in mind Theorem 3.13, we obtain the following formulas

T 1o

/sinh (s — z)log sds = (coshax — 1) logx — Z

0 T?’L():l

Hamo—1,1_2m,
(2m0)' ’

x

/smh (s — x)log? sds = (coshz — 1) log? z — 2log z Zl 22";”700)1.1;102mo7
0 mo=

“+oo
+ Hing—11+ Homo-12 o,

o1 2m0)

/cosh (s — z)log sds = sinhz log z — E _2mol g 2motl
0 m '
€T

—+o0
Hopm,
/cosh (s — x)log?® sds = sinh zlog? z — 2log = Z (270’1332’”0“,
0 0=0

+oo 2
H3po 1+ Ham,

2 omo+1
(2m0 + 1)' ’

+

mo:O

4. Conclusion

In this paper, we introduced the so-called log —series. The idea was to consider a
real power series and replace the natural powers with multidual integers and the coeffi-
cient by a multidual sequence. The sum of a log —serie is said to be log —function. We
have studied some elementary log —function, namely the log —exponential function, the
log —trigonometric functions and the log —hyperbolic functions, as generalization of the
real elementary functions. It has been shown that we can use log —functions and tools of
multidual analysis to obtain expansion of some special functions in series involving n—th
power of the Logarithmic function and Harmonic numbers.



log —Series and log —functions as application of multidual analysis 65

Acknowledgements

The author would like to thank the unknown reviewers for their comments and sug-
gestions. He would also like to express his gratitude to the editor for their support and
for agreeing to publish the article.

References

1]

2]

3]

[12]
[13]

[14]

M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables, Dover, New York, 1964. ISBN 978-0-486-
61272-0.

W. K. Clifford, Preliminary Sketch of Bi-Quaternions, Proc. London Math. Soc., 4
(1873), 381-395.

D. Condurache, A Novel Method for Higher-Order Kinematics in Multibody Sys-
tems, Conference: The 9th international conference on advanced composite materials
engineering COMAT 2022, 17-18 October- 2022 in Brasov, Romaéania. At: Brasov,
Romania.

D. Condurache, Analysis of Higher- Order Kinematics on Multibody Systems with
Nilpotent Algebra. In: Petri¢, T., Ude, A., Zlajpah, L. (eds) Advances in Service
and Industrial Robotics. RAAD 2023. Mechanisms and Machine Science, vol 135.
Springer, Cham.

D. Condurache, Higher-Order Kinematics of Lower-Pair Chains with Hyper-
Multidual Algebra, ASME 2022 International Design Engineering Technical Confer-
ences €& Computers and Information in Engineering Conference (IDETC/CIE2022).
D. Condurache, C. Mihail and I. Popa, Hypercomplex Dual Lie Nilpotent Algebras
and Higher-Order Kinematics of Rigid Body, Proceedings of SYROM 2022 €& RO-
BOTICS 2022.

D. Condurache, Hyper-Multidual Algebra and Higher-Order Kinematics, Advances
in Robot Kinematics 2022.

D. Condurache, Multidual Algebra and Higher-Order Kinematics, FuCoMeS 2020:
New Trends in Mechanism and Machine Science, 48-55.

D. Condurache, Multidual and Dual Lie Algebra Representations of Higher-Order
Kinematics, 2022 AAS/AIAA Astrodynamics Specialist Conference At: August 7 -
11, 2022 in Charlotte, North Carolina.

D. Condurache, Product of Exponential Formula of Multidual Quaternions and
Higher-Order Kinematics, 9th 2023 International Conference on Control, Decision
and Information Technologies (CoDIT 2023) At: Roma.

D. Condurache, M. Cojocari and I. Popa, Multidual Quaternions and Higher-Order
Kinematics of Lower-Pair Chain, ECCOMAS Thematic Conference on Multibody
Dynamics, July 24 - 28, 2023, Lisbon, Portugal.

W. B. V. Kandasamy and F. Smarandache, Dual Numbers, ZIP Publishing Ohio,
2012.

J. E. Kim, The Corresponding Inverse of Functions of Multidual Complex Variables
in Clifford Analysis, J. Nonlinear Sci. Appl., 9 (2016), 4520-4528.

F. Messelmi, Analysis of Dual Functions, Annual Review of Chaos Theory, Bifurca-
tions and Dynamical Systems, Vol. 4 (2013), 37-54.



66 Hilbert J. Math. Anal. Vol. 2-1 (2023) /Farid Messelmi

[15] F. Messelmi, Differential Calculus of Multidual Functions, Annual Review of Chaos
Theory, Bifurcations and Dynamical Systems, Vol. 10 (2021), 1-15.

[16] F. Messelmi, Multidual Numbers and Their Multidual Functions, Electronic Journal
of Mathematical Analysis and Applications, Vol. 3(2) (2015), 154-172.

[17] F. Messelmi, Multidual Algebra, International Journal of Mathematics, Game The-
ory and Algebra, Vol. 26(1) (2017).

[18] F. Messelmi, Ring of Multidual Integers, International Journal of Mathematics,
Game Theory and Algebra, Vol. 28(4) (2020).



	Introduction
	Preliminaries
	-Series, -Functions, and Applications
	-Exponential Function
	-Trigonometric Functions
	-Hyperbolic Functions

	Conclusion

