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1. Introduction

The quadratic-phase Fourier transform [6, 7] is a generalization of many transforma-
tions such as the Fourier transform [4, 9], fractional Fourier transform [1-3, 5, 8, 10, 11],
linear canonical transform, and special affine Fourier transform. On the other hand, the
uncertainty principle plays an important role in signal processing. It describes a func-
tion and its Fourier transform, which cannot both be simultaneously sharply localized.
Uncertainty principles have implications in two main areas: quantum physics and signal
analysis. In quantum physics, they tell us that a particle and position cannot both be
measured with infinite precision. In signal analysis, they tell us that if we observe a signal
only for a finite period of time, we will lose information about the frequencies of the sig-
nal. In the recent past, many works have been devoted to establishing some uncertainty
principles in different settings of various transforms. In this work, we establish three
inequalities related to the quadratic phase Fourier transform.

2. Preliminaries and Basic Facts

In this part, we recall some notations, definitions, and preliminary facts which are
needed throughout this work.
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Definition 2.1. The one-dimensional quadratic-phase Fourier transform (1IDQPFT) of
a function f € L?(R) is given by the integral

Qre{f}(w) = / f(2)K (2,0) d,

where

K(CC,LL)) _ efi(am2+bxw+cw2+dx+ew)'

Without loss of generality throughout this study, we always assume that b > 0. Let
LP(R) denotes the Banach space of integrable functions such that

1/p
I fllLer)y = (/ |f(z)|P dm) < oo, forpell,c0)
R
and
| flloe r) = esssﬂtgp|f(:v)| < 0o, forp=oc.
Te

It is straightforward to check that the Parseval’s formula for the 1IDQPFT related to
complex functions f,g € L?(R) is expressed as

(fr9) = / f ()9 (@) de = / Qe {f}(w) O {9} (@) do.
In particular,

11122 @y = Qe fHIZ2my-

3. Relationship between the Fourier transform and the quadratic-
phase quadratic transform

Below, we describe relationship between the Fourier transform and the quadratic-phase
transform as follow:

i) = [ f@K () ds
— /f(x)e—i(axz+brw+cw2+dr+ew) dr
R
e—i(cw2+ew)/f(x)e—i(az2+dz)e—ibrwdx
R
— e—i(cw2+ew)/g(x)e—ibxw dx
R
_ e_i(cw2+ew)}—{g}(bw).
Here
gl(@) = f(a)e "0+, (3.1)
Therefore

O {fHw)el ™) = Fg}(w), (3.2)



22 Hilbert J. Math. Anal. Vol. 2-1 (2023) /Mawardi Bahri

where F{g}(w) is the Fourier transform for a complex function g € L?(R) in [4, 9] defined
by

FlgHw) = §(w) = / o(@)e= " da.

4. Uncertainty principles for Quadratic-Phase Fourier Transform

In this section, we investigate two uncertainty principles related to the quadratic-
phase Fourier transform. The principles can be considered as an extension of uncertainty
principles for the Fourier transform.

4.1. Heisenberg’s inequality

We obtain the Heisenberg’s inequality related to the quadratic-phase Fourier transform
in the following result.

Theorem 4.1. Let f € L*(R) be a complex function. If Qx{f}(w) € L*(R), we have

(/Rxplf(atﬂpdgg) (/RWPQK (o (w)|pdw) . b—(2pp+1) (/le(x)'zdx)p.

For1< p<2.

Proof. Tt directly follows from the generalization of the Heisenberg’s inequality for the
Fourier transform that

([eir@re) ([w1Fmwre) = (5) ([r@rea)

Since g(t) defined by (3.1) belongs to L?(R), then by replacing f(¢) by g(t) into the above
identity, we obtain

([#s@ra) ([oiFmeore) = (3) ([oe@re) oy

Substituting w with wb, we see from relations (4.1) that

([ lo@pa) ([ @riFgreraan) = (3) ([owre)

From equation (3.2) we get

L) ([orles e Tl
. (;)p (/R‘f(x) o—i(az’+dz)

2 p
dcc) .
The above equation is equal to

</Rxp|f(:v)|pd;p> (/prgK () (w)|pdw) . b*(;:l) </]R|f(x)|2 dx),,’

and the proof is complete. ]

f ({IJ) efi(aw2+dm)




Three Inequalities for Quadratic-Phase Fourier Transform 23

4.2. Hausdorff-Young Inequality

In this part, we establish Housdorf-Young inequality for the quadratic- phase Fourier
Transform.

Theorem 4.2 (Hausdorff-Young inequality). For any 1 < r < 2 such that % + % =1
Then for every function f in L"(R), there holds

([1extnr dw)' <ottt ([ dx) . (12)

Proof. Applying the sharp Hausdorfl-Young inequality related to the conventional Fourier
transform results in

(fiere) soocs ([ )"

Replacing f(t) by g(¢) defined by (3.1) results in

(firtoora) Ve ([ st a) 1/

Setting w = wb yields

([1Faenra <wb>);<r? ([ o) da:) . (43)

Applying (3.1) and (3.2) to equation (4.3), yields

(/ ‘QK{f} 1(0‘“ +ew)‘ dw)i <rorsTe (/R’f(x)e—i(an-i-dI)
([1octnera)’ sirtrives ([ ioras)

and proof is complete. [

1

de)r.

Hence,

4.3. Matolcsi-Szucs Inequality

Based on Housdorf-Young inequality for the quadratic-phase Fourier Transform, we
obtain Matolcsi-Szucs inequality related to the quadratic- phase Fourier transform.

Theorem 4.3 (Matolcsi-Szucs Inequality). Let f € L™ (R)N L™2(R) such that 1 <1y <
ro < 2, then

1Qr{f} Lo2(R) S ’SUPP QK{f})
where——i———land —1———1

r2—7T1
nre || A

b1 2 b sl /r27‘1 81

()

L72(R)s

Proof. Applying equation (4.2) and Hélder’s inequality, we get

1Qu L H oo (i) < | supp(Qc{F1)] 77 Qe { £

S17s3 11—z
< | supp(Qu{ /)| "2 b T rZ s [ fll o (w)- (4.4)

L1 (R)
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Here F' = supp(f). Similarly, we have
||fHLr1 (R) = HXFfHLm (R)

< ( / xF<x>|dx) ( [r@rs dx)

To

- ([ nettac) ”;;1 ([ d)

r2—mi
= [P 1

L72(R)
r2—r1
= |supp(f)| 777 [ fllLr2 - (4.5)
Including (4.5) into (4.4) gives

1Qx{FH ea ) < |supp(Qic{F}) Nl

and the proof is complete. [

s

1-%2 11—
s, supp ()

5. Conclusion

In this paper, we have introduced the quadratic-phase Fourier transform. We have pre-
sented the relation between the one-dimensional quadratic-phase Fourier transform and
the one-dimensional Fourier transform. We applied this relation to obtain several ver-
sions of the inequalities related to the proposed one-dimensional quadratic-phase Fourier
transform.
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