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Abstract The main goal of this paper is to find the coefficients of finite linear combination of Jacobi
polynomials and finite linear combination of the integrals of Legendre polynomials expansion of the

derivative of a function in terms of the coefficients in the expansion of the original finite linear combination

functions. More precisely, if Qn is a sequence or orthogonal polynomials, and if

p(x) =

n∑
j=0

ajQn−j(x)

is such that

p′(x) =
n−1∑
j=0

djQn−j−1(x).

We find an explicit relation for the coefficients dj , as linear combinations of the coefficients aj . This

will be done for two celebrated classes of orthogonal functions, namely the Jacobi polynomials and the

integrals of the Legendre polynomials.
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1. Introduction

The need for approximating polynomials has been an important topic in many branches
of mathematics and computer approximation. This is due to the easy nature of polyno-
mials, which facilitates the treatment of other complicated functions.

Solving integrals, derivatives, ordinary and partial differential equations can be sim-
plified extensively when polynomials replace other functions. Moreover, approximation
formulas used in numerical methods are built mostly on polynomial approximations.

Thus, computers, calculators, and codes benefit from this approximation idea, where
efficient algorithms can be implemented to find good approximations of some complicated
problems.
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It is due to the celebrated Weierstrass approximation theorem that any continuous
function on a given interval [a, b] can be uniformly approximated by polynomials.

However, orthogonal polynomials acquire the most attention due to their applications
and easy computations, despite of their complicated forms in some cases. This being
said, with the existing technology and built-in functions, the complicated nature of such
polynomials becomes negligible.

In the sequel, a family {Qn(x)}n=0,1,2,··· of nonzero polynomials is said to be orthogonal
on the interval [a, b], with respect to the density function ω(x) defined on the interval [a, b],
which is also called the weight function. Namely∫ b

a

Qi(x)Qj(x)ω(x)dx = 0, i ̸= j.

For simplicity, we will write {Qn} instead of {Qn(x)}n=0,1,2···. In this paper, we assume
that the degree of Qn is n. This is the case in most applications. If ω(x) = 1, we simply
say that the set {Qn} is orthogonal, without referring to any weight.

Thus, given a polynomial φn, of degree n, it can be written as a linear combination

φn =

n∑
j=0

ajQn−j ,

where

aj =

∫ b

a
φn(x)Qn−j(x)ω(x)dx∫ b

a
Q2

n−j(x)ω(x)dx
.

These coefficients are usually referred to as the Fourier coefficients of φn with respect to
{Qn}. Since φn is a polynomial of degree n, its derivative φ′

n is of degree at most n− 1.
Therefore,

φ′
n =

n−1∑
j=0

djQn−j−1,

where

dj =

∫ b

a
φ′
n(x)Qn−j−1(x)ω(x)dx∫ b

a
Q2

n−j−1(x)ω(x)dx
.

The aim of this work is to find the coefficients of finite linear combination of Ja-
cobi polynomials and the coefficients of finite linear combination of the integrals of Le-
gendre polynomials expansion of the derivative of a function in terms of the coefficients
in the expansion of the original finite linear combination functions. In particular, for
j = 1, 2, 3, . . . , n − 1, we will be able to express the coefficients dj as linear combination
of aj .

For more information and references, we refer to [1, 3–9] and also to the papers [10–
14, 16] we refer to them for some relations and references.

2. The Jacobi polynomials case

Let Πn be the space of polynomials of degree not greater than n. By P
(α,β)
n (x) , where

n is a non-negative whole number, we denote the n-th Jacobi polynomial. It is known
that Jacobi polynomials with the same parameters α and β are orthogonal on [−1, 1], with
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respect to to the Jacobi weight function ωα,β (x) = (1− x)
α
(1 + x)

β
. The Jacobi weight

function ωα,β belongs to L1 ([−1, 1]) if and only if α, β > −1 (to be assumed throughout
this section). Namely

1∫
−1

P (α,β)
n (x)P (α,β)

m (x)ωα,β (x) dx = γn,kδn,m, (2.1)

where

γn,k =
∥∥∥P (α,β)

n

∥∥∥2
wα,β

=
2α+β+1Γ (n+ α+ 1)Γ (n+ β + 1)

n! (2n+ α+ β + 1)Γ (n+ α+ β + 1)
. (2.2)

Here, and in what follows, δn,m is the Kronecker delta. Denoting the Binomial coefficients
by Ck

n, we shall need the following properties of Jacobi polynomials [15]:

P (α,β)
n (x) =

Γ (n+ α+ 1)

n!Γ (n+ α+ β + 1)

n∑
k=0

Cn
k

Γ (n+ k + α+ β + 1)

Γ (k + α+ 1)

(x− 1)
k

2k
, (2.3)

A recurrence relation for the derivative is given by

d

dx
P (α,β)
n (x) =

1

2
(n+ α+ β + 1)P

(α+1,β+1)
n−1 (x) . (2.4)

Applying this formula recursively yields, for k = 0, 1, 2, . . . , n,

dk

dxk
P (α,β)
n (x) =

1

2k
Γ (n+ k + α+ β + 1)

Γ (n+ α+ β + 1)
P

(α+k,β+k)
n−k (x) . (2.5)

Replacing x by −x in (2.3) immediately leads to the symmetric relation

P (α,β)
n (−x) = (−1)

n
P (β,α)
n (x) .

Moreover,

P (α,β)
n (1) =

2n (α)n (α+ β)n
(α+ β)2n

, (2.6)

and

P (α,β)
n (−1) =

(−2)
n
(β)n (α+ β)n

(α+ β)2n
, (2.7)

where

(α)n = (α+ n) (α+ n− 1) . . . (α+ 1) .

Here, (α)n is the Pochhammer symbol.

The Jacobi polynomials are generated by the three-term recurrence relation [8, 16]

P
(α,β)
n+1 (x) =

(
aα,βn x− bα,βn

)
P (α,β)
n (x)− cα,βn P

(α,β)
n−1 (x) , (2.8)

where

aα,βn =
(2n+ α+ β + 1) (2n+ α+ β + 2)

2 (n+ 1) (n+ α+ β + 1)
, (2.9)

bα,βn =

(
−α2 + β2

)
(2n+ α+ β + 1)

2 (n+ 1) (n+ α+ β + 1) (2n+ α+ β)
, (2.10)
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and

cα,βn =
(n+ α) (n+ β) (2n+ α+ β + 2)

(n+ 1) (n+ α+ β + 1) (2n+ α+ β)
. (2.11)

Moreover, the Jacobi polynomials can be written in terms of their derivatives as follows

P (α,β)
n (x) =

n∑
l=0

λ
(α,β)
n,l P

(α,β)′
l (x) , (2.12)

where the coefficients λ
(α,β)
n,l , l = 0, 1, 2, . . . , n can be computed in terms of n, α, β as

follows

λ
(α,β)
n,l = α

(α,β)
n,l

1∫
−1

P (α,β)
n (x)P

(α+1,β+1)
l−1 (x)ωα+1,β+1 (x) dx , l = 0, 1, 2, . . . , n,

in which

α
(α,β)
n,l =

(n− 1)! (l + α+ β + 1) (2n+ α+ β + 1) (n+ α+ β + 2)Γ (n+ α+ β)

2α+β+3Γ (n+ α+ 1)Γ (n+ β + 1)
.

Here and hereafter, P−1 = 0 by convention. The relation (2.12) takes the following form
[15]

P (α,β)
n (x) = qα,βn P

(α,β)′
n−1 (x) + rα,βn P (α,β)′

n (x) + sα,βn P
(α,β)′
n+1 (x) , (2.13)

where

qα,βn = − 2 (n+ α) (n+ β)

(n+ α+ β) (2n+ α+ β) (2n+ α+ β + 1)
, (2.14)

rα,βn =
2 (α− β)

(2n+ α+ β) (2n+ α+ β + 2)
, (2.15)

and

sα,βn =
2 (n+ α+ β + 1)

(2n+ α+ β + 1) (2n+ α+ β + 2)
. (2.16)

The main result is established in the following theorem.

Theorem 2.1. Let α, β > −1 and let P
(α,β)
n (x) denote the Jacobi polynomials, as defined

in (2.3). For n ≥ 1, let pn denote another polynomial such that

pn (x) =

n∑
j=0

ajP
α,β
n−j (x) and p′n (x) =

n−1∑
j=0

djP
α,β
n−j−1 (x) . (2.17)

Then

d0 = a0
(2n+ γ − 1) (2n+ γ)

2 (n+ γ)
(2.18)

and

d1 = a1
(2n+ γ − 1) (2n+ γ)

2 (n+ γ − 1)
− a0

(α− β) (2n+ γ) (2n+ γ − 1)
2

2 (n+ γ) (n+ γ − 1) (2n+ γ − 2)
. (2.19)
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where γ = α+ β. For j = 2, . . . , n− 1, we have

dj = aj
(2n− 2j + γ − 1) (2n− 2j + γ)

2 (n− j + γ)

− dj−1
2 (α− β) (2n− 2j + γ − 1) (2n− 2j + γ)

2 (n− j + γ) (2n− 2j + γ) (2n− 2j + γ + 2)

+ dj−2
(n− j + α+ 1) (n− j + β + 1) (2n− 2j + γ − 1) (2n− 2j + γ)

(n− j + γ) (n− j + γ + 1) (2n− 2j + γ + 1) (2n− 2j + γ + 2)
.

(2.20)

Proof. By integrating (2.13), we obtain∫
P

(α,β)
n−j−1 (x) dx = qα,βn−j−1P

(α,β)
n−j−2 (x)+rα,βn−j−1P

(α,β)
n−j−1 (x)+sα,βn−j−1P

(α,β)
n−j (x)+Cj

(2.21)

where

qα,βn−j−1 = − 2 (n− j − 1 + α) (n− j − 1 + β)

(n− j − 1 + α+ β) (2n− 2j − 2 + α+ β) (2n− 2j + α+ β − 1)
,

(2.22)

rα,βn−j−1 =
2 (α− β)

(2n− 2j − 2 + α+ β) (2n− 2j + α+ β)
, (2.23)

sα,βn−j−1 =
2 (n+ α+ β + 1)

(2n− 2j + α+ β − 1) (2n− 2j + α+ β)
, (2.24)

and Cj is a certain constant to be fixed latter.

On the other hand, by integrating (2.17), yields

pn (x) =

n−1∑
j=0

dj

∫
P

(α,β)
n−j−1 (x) dx

=

n−1∑
j=0

dj

(
qα,βn−j−1P

(α,β)
n−j−2 (x) + rα,βn−j−1P

(α,β)
n−j−1 (x) + sα,βn−j−1P

(α,β)
n−j (x)

)
+ C ′

=

n−1∑
j=0

djq
α,β
n−j−1P

(α,β)
n−j−2 (x) + djr

α,β
n−j−1P

(α,β)
n−j−1 (x) + djs

α,β
n−j−1P

(α,β)
n−j (x)

+ C ′

= dn−1q
α,β
0 P

(α,β)
−1 (x) + dn−2q

α,β
1 P

(α,β)
0 (x) +

n−3∑
j=0

djq
α,β
n−j−1P

(α,β)
n−j−2 (x)

+ d0r
α,β
n−1P

(α,β)
n−1 (x) + dn−1r

α,β
0 P

(α,β)
0 (x) +

n−2∑
j=1

djr
α,β
n−j−1P

(α,β)
n−j−1 (x)

+ d0s
α,β
n−1P

(α,β)
n (x) + d1s

α,β
n−2P

(α,β)
n−1 (x) +

n−1∑
j=2

djs
α,β
n−j−1P

(α,β)
n−j (x) + C ′,
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where C ′ =
n−1∑
j=0

Cjdj . This immediately implies

pn (x) = dn−1q
α,β
0 P

(α,β)
−1 (x) + dn−2q

α,β
1 P

(α,β)
0 (x) +

n−1∑
j=2

dj−2q
α,β
n−j+1P

(α,β)
n−j (x)

+ d0r
α,β
n−1P

(α,β)
n−1 (x) + dn−1r

α,β
0 P

(α,β)
0 (x) +

n−1∑
j=2

dj−1r
α,β
n−jP

(α,β)
n−j (x)

+ d0s
α,β
n−1P

(α,β)
n (x) + d1s

α,β
n−2P

(α,β)
n−1 (x) +

n−1∑
j=2

djs
α,β
n−j−1P

(α,β)
n−j (x) + C ′.

That is,

pn (x) =

n−1∑
j=2

(
djs

α,β
n−j−1 + dj−1r

α,β
n−j + dj−2q

α,β
n−j+1

)
P

(α,β)
n−j (x)

+
(
d0r

α,β
n−1 + d1s

α,β
n−2

)
P

(α,β)
n−1 (x) + d0s

α,β
n−1P

(α,β)
n (x)

+
(
dn−1r

α,β
0 + dn−2q

α,β
1 + C ′

)
P

(α,β)
0 (x) + dn−1q

α,β
0 P

(α,β)
−1 (x) .

Comparing this form with pn (x) =
n∑

j=0

ajP
α,β
n−j (x) , and recalling that P

(α,β)
−1 (x) = 0,

we obtain

a0 = d0s
α,β
n−1 (2.25)

a1 = d0r
α,β
n−1 + d1s

α,β
n−2 (2.26)

aj = djs
α,β
n−j−1 + dj−1r

α,β
n−j + dj−2q

α,β
n−j+1, j = 2, . . . , n− 1, (2.27)

and

an = dn−1r
α,β
0 + dn−2q

α,β
1 + C ′. (2.28)

Substituting (2.14), (2.15) and (2.16) into (2.25), (2.26), (2.27) and (2.28) implies, for
j = 2, . . . , n− 1,

a0 = d0
2 (n+ α+ β)

(2n+ α+ β − 1) (2n+ α+ β)

a1 = d0
2 (α− β)

(2n+ α+ β − 2) (2n+ α+ β)
+ d1

2 (n+ α+ β − 1)

(2n+ α+ β − 1) (2n+ α+ β)

aj = dj
2 (n− j + α+ β)

(2n− 2j + α+ β − 1) (2n− 2j + α+ β)

+ dj−1
2 (α− β)

(2n− 2j + α+ β) (2n− 2j + α+ β + 2)

− dj−2
2 (n− j + α+ 1) (n− j + β + 1)

(n− j + α+ β + 1) (2n− 2j + α+ β + 1) (2n− 2j + α+ β + 2)
,
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and

an = dn−1
2 (α− β)

(α+ β) (α+ β + 2)
− dn−2

2 (α+ 1) (β + 1)

(α+ β + 1) (α+ β + 2) (α+ β + 3)
+ C ′.

(2.29)

Solving the first three equations for d0, d1 and dj when j = 2, . . . , n− 1 implies

d0 = a0
(2n+ α+ β − 1) (2n+ α+ β)

2 (n+ α+ β)
,

d1 = a1
(2n+ α+ β − 1) (2n+ α+ β)

2 (n+ α+ β − 1)
− d0

(α− β) (2n+ α+ β − 1)

(n+ α+ β − 1) (2n+ α+ β − 2)

and

dj = aj
(2n− 2j + γ − 1) (2n− 2j + γ)

2 (n− j + γ)

− dj−1
2 (α− β) (2n− 2j + γ − 1) (2n− 2j + γ)

2 (n− j + γ) (2n− 2j + γ) (2n− 2j + γ + 2)

+ dj−2
(n− j + α+ 1) (n− j + β + 1) (2n− 2j + γ − 1) (2n− 2j + γ)

(n− j + γ) (n− j + γ + 1) (2n− 2j + γ + 1) (2n− 2j + γ + 2)
,

where γ = α + β. Notice that this gives all values for dj when j = 0, . . . , n − 1. Now,
for all j we my choose Cj , the constant of integration that appeared in (2.21) so that

C ′ :=
n−1∑
j=0

Cjdj satisfies (2.29). This completes the proof of the theorem.

Remark 2.2. In the proof of Theorem 2.1, we had to choose certain values for Cj so

that
∑n−1

j=0 Cjdj = L, where

L = an−
(
dn−1

2 (α− β)

(α+ β) (α+ β + 2)
− dn−2

2 (α+ 1) (β + 1)

(α+ β + 1) (α+ β + 2) (α+ β + 3)

)
.

We point out that this is always doable. Indeed, let j0 be any index between 1 and n− 1
such that dj0 ̸= 0. Then, we may let Cj0 = L

dj0
and cj = 0, j ̸= j0. The existence of an

index j0 such that dj0 ̸= 0 is justified by the fact that p′ ̸≡ 0.

3. Integral Legendre polynomials case

Let (Ln)n=0,1,2,3,... be the Legendre polynomials. It is well know that the n-th Legendre
polynomials, Ln satisfies the orthogonality relation

1∫
−1

Ln (x)Lm (x) dx =
2

2n+ 1
δn,m,

where δn,m is the Kronecker delta. For n = 0, 1, . . . , let {Ln(x)} denotes the sequence of
Legendre polynomials. The Legendre polynomials obeys a three-term recurrence relation:

L0(x) = 1, L1(x) = x

(n+ 1)Ln+1 (x) = (2n+ 1)xLn (x)− nLn−1 (x) , n = 1, 2, . . .

and the differential equation((
1− x2

)
L′
n (x)

)′
= −n (n+ 1)Ln (x) . (3.1)
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In fact, the derivatives of the Legendre polynomials are also orthogonal with respect to
the weight function ω(x) = 1− x2, where we have

1∫
−1

L′
n (x)L

′
m (x)

(
1− x2

)
dx =

2n (n+ 1)

2n+ 1
δn,m. (3.2)

In [2], polynomials that have roots at x = ±1, with all other roots in (−1, 1) were
treated and connected to the Legendre polynomials. Also, in [2], a discussion of poly-
nomials whose inflection points and roots in (−1, 1) coincide. These polynomials were
referred to as PIPCIR. In [2], it was shown that these polynomials have the form

Qn (x) = −
1∫

x

Ln−1 (t) dt − 1 ≤ x ≤ 1, n ≥ 2. (3.3)

When n = 0, 1, we defineQ0(x) = 1, Q1(x) = x. However these functions are notPIPCIR
functions. It follows immediately from (3.3) that

Q′
n (x) = Ln−1 (x) and Q′′

n (x) = L′
n−1 (x) , n ≥ 1.

The functions Qn (x) and Qm (x) (n,m ≥ 2 and n ̸= m) are orthogonal with respect to

the weight function ω (x) =
1

1− x2
. More precisely [2]

1∫
−1

Qn (x)Qm (x)

1− x2
dx =

2

n (n− 1) (2n− 1)
δn,m, n,m ≥ 2.

Some important properties of the sequence {Qn} can be listed as follows [2]:

Qn (x) =
(
1− x2

)
qn−2 (x) , n ≥ 2.

Q′′
n (x) = −n (n− 1) qn−2 (x) , n ≥ 2.(
1− x2

)
Q′′

n (x) + n (n− 1)Qn (x) = 0, n ≥ 1.

−2xQ′′
n (x) +

(
1− x2

)
Q′′′

n (x) + n (n− 1)Q′
n (x) = 0, n ≥ 1.

Qn (±1) = 0, n ≥ 2.

Q′
n (1) = 1, n ≥ 2.

Q′′
n (1) =

1

2
(±1)

n−1
n (n− 1) , n ≥ 2.

Orthogonality of the {Qn} with respect to the weight function 1
1−x2 implies orthogonality

of {qn} with respect to the weight function
(
1− x2

)
. Indeed, for n,m = 0, 1, . . . , we have

1∫
−1

qn (x) qm (x)
(
1− x2

)
dx =

2

(n+ 2) (n+ 1) (2n+ 3)
δn,m.

From this, it follows that

∥qn (x)∥2 =

1∫
−1

q2n (x)
(
1− x2

)
dx =

2

(n+ 2) (n+ 1) (2n+ 3)
. (3.4)
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The recurrence relation

Ln (x) =
1

2n+ 1

(
L′
n+1 (x)− L′

n−1 (x)
)

for the Legendre polynomials can be stated equivalently in the form

Q′
n (x) =

1

2n− 1

(
Q′′

n+1 (x)−Q′′
n−1 (x)

)
. (3.5)

Integrating both sides of (3.5) yields

Qn (x) =
1

2n− 1

(
Q′

n+1 (x)−Q′
n−1 (x)

)
, n ≥ 1. (3.6)

We refer the reader to the informative reference [2] for further properties of {Qn}, and
its deep relations with the Legendre and Jacobi polynomials.

Due to the significance of these functions, the {Qn}, we discuss the problem of finding
the coefficients in the linear combination of the derivative of a function in terms of the
coefficients for the original function. The following result is the main result in this regard.

Theorem 3.1. Let Qn(x) denote the polynomials discussed above. For n ≥ 5, let Gn be
another polynomial such that

Gn (x) =

n∑
j=0

λjQn−j (x) and G′
n (x) =

n−1∑
j=0

vjQn−j−1 (x) . (3.7)

Then

ν0 = (2n− 3)λ0,

ν1 = (2n− 5)λ1,

νj =
2n− 2j − 3

2n− 2j + 1
νj−2 + (2n− 2j − 3)λj , 2 ≤ j ≤ n− 3,

νn−2 = λn−2 −
1

5
νn−4,

νn−1 = λn−1 −
1

3
νn−3.

Proof. By integrating both sides of (3.6) and noting, we get∫
Qn−j−1 (t) dt =

1

2n− 2j − 3
(Qn−j (x)−Qn−j−2 (x)) + Cj , j ≤ n− 3, (3.8)

where Cj is a certain constant. When

j = n− 2,we have

∫
Qn−j−1 (t) dt = Q2(x) + Cn−2,

j = n− 1, we have

x∫
−1

Qn−j−1 (t) dt = x+ 1 = Q1(x) + Cn−1.
(3.9)

Now integrating G′
n (x) =

n−1∑
j=0

vjQn−j−1 (x) implies

Gn (x) =

n−1∑
j=0

νj

∫
Qn−j−1 (t) dt.
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Using (3.8) and (3.9), we can write

Gn(x) =

n−3∑
j=0

νj
1

2n− 2j − 3
(Qn−j (x)−Qn−j−2 (x))

+ νn−2Q2(x) + νn−1Q1(x) + C ′,

where C ′ =
∑n−1

j=0 Cjνj . This can be written as

Gn(x) =

n−3∑
j=0

νj
1

2n− 2j − 3
(Qn−j (x)−Qn−j−2 (x))

+ νn−2Q2(x) + νn−1Q1(x) + C ′

=

n−3∑
j=0

νj
1

2n− 2j − 3
Qn−j (x)−

n−3∑
j=0

νj
1

2n− 2j − 3
Qn−j−2 (x)

+ νn−2Q2(x) + νn−1Q1(x) + C ′

=

n−3∑
j=2

(
1

2n− 2j − 3
νj −

1

2n− 2j + 1
νj−2

)
Qn−j (x)

+ ν0
1

2n− 3
Qn (x) + ν1

1

2n− 5
Qn−1 (x) +

1

5
νn−4Q2 (x)

+
1

3
νn−3Q1(x) + νn−2Q2(x) + νn−1Q1(x) + C ′.

(3.10)

But Gn(x) =
n∑

j=0

λjQn−j (x) . Equating the corresponding coefficients from this and (3.10)

implies

λ0 =
1

2n− 3
ν0,

λ1 =
1

2n− 5
ν1,

λj =
1

2n− 2j − 3
νj −

1

2n− 2j + 1
νj−2, 2 ≤ j ≤ n− 3,

λn−2 =
1

5
νn−4 + νn−2,

λn−1 =
1

3
νn−3 + νn−1,

λn = C ′.
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Conversely, we get

ν0 = (2n− 3)λ0,

ν1 = (2n− 5)λ1,

νj =
2n− 2j − 3

2n− 2j + 1
νj−2 + (2n− 2j − 3)λj , 2 ≤ j ≤ n− 3,

νn−2 = λn−2 −
1

5
νn−4,

νn−1 = λn−1 −
1

3
νn−3.

Now, having found all coefficients, we choose Cj to satisfy
∑n−1

j=0 νjCj = λn. This com-
pletes the proof of the theorem.

Remark 3.2. In the proof of Theorem 3.1, we need to find Cj so that
∑n−1

j=0 νjCj = λn.
This is always solvable. This can be done in the same way as in Remark 2.2.
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