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Abstract In this paper, we establish relationships between the norms of both Bourgain-Morrey spaces

and Wiener amalgam spaces. Therefore, we take advantage of these relations to study the action on

Bourgain-Morrey spaces of some classical operators such as maximal operators, Hardy operators, some

sublinear operators and their commutators, and the Fourier transform. We also establish in Bourgain-

Morrey spaces a norm equivalence of Riesz potential and fractional maximal function.

MSC: 42B35; 42B10; 42B25

Keywords: Bourgain-Morrey spaces; Wiener amalgam spaces; Maximal operators; sublinear operators

and their commutators; Fourier transform; Riesz potential operator

Received: 20-03-2024 / Accepted: 08-07-2024 / Published: 01-08-2024
DOI : https://doi.org/10.62918/hjma.v2i2.22

1. Introduction

This paper investigates the action of some classical operators of harmonic analysis on
a class of function spaces related to Morrey spaces, called Bourgain-Morrey spaces.

Recall that the classical Lebesgue space Lq := Lq(Rd), with q ∈ [1,∞] , is defined to
be the set of all measurable complex functions f on Rd such that

∥f∥q :=

[∫
Rd

|f(x)|q dx
] 1

q

< ∞

with the usual modification made when q = ∞. In what follows, |E| and χE denote
the Lebesgue measure and the characteristic function of any measurable set E ⊂ Rd,
respectively. Lq

loc denotes the set of all measurable complex functions f on Rd such that

fχK ∈ Lq for any bounded measurable subset K of Rd.
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For 1 ≤ q, α ≤ ∞, the classical Morrey space Mα
q := Mα

q (Rd) is defined as the set of

all elements f of Lq
loc for which

∥f∥Mα
q
:= sup

x∈Rd, r>0

|Q(x, r)|
1
α− 1

q

∥∥fχQ(x,r)

∥∥
q
< ∞,

where

Q(x, r) =
d∏

j=1

[
xj −

r

2
, xj +

r

2

)
, x = (x1, x2, ..., xd) ∈ Rd and 0 < r < ∞.

Morrey spaces were introduced in 1938 by C. Morrey [14] to study both the regularity
problem of solutions for quasi-linear elliptic partial differential equations and the calculus
of variations. Note that, for 1 ≤ q ≤ α ≤ ∞, Lα is included in Mα

q and the inclusion
is proper when q < α < ∞. Moreover, Morrey spaces describe the local regularity of
functions more precisely than Lebesgue spaces. Because of this issue, various Morrey-
type spaces well suited for easy use in harmonic analysis and specifically in the fields
of partial differential equations have been introduced. Examples of such spaces include
Bourgain-Morrey spaces.

Recall that the theory of Bourgain-Morrey spaces goes back to Bourgain [2], who
considered a special case to study the Stein-Tomas estimate. Since then, their use has
turned out fruitful in the study of Fourier restriction, multipliers problems, and partial
differential equations, and in the proof of refinements of Strichartz inequality (see [10, 12,
13] and the references therein). They are defined as follows.

Definition 1.1. Let 1 ≤ q, α, p ≤ ∞. The Bourgain-Morrey space Mα
q,p := Mα

q,p(Rd) is

defined as the set of all f ∈ Lq
loc for which

∥f∥Mα
q,p

:=

∥∥∥∥{|Qk,m|
1
α− 1

q
∥∥fχQk,m

∥∥
q

}
(k,m)∈Zd×Z

∥∥∥∥
ℓp

(1.1)

is finite. Here and thereafter the sets

Qk,m =
d∏

j=1

[kj2
m, (kj + 1) 2m) , k = (k1, k2, ..., kd) ∈ Zd, m ∈ Z

are the usual dyadic cubes of Rd and for any sequence {ai}i∈I included in C, where I is
a countable set and C is the set of complex numbers,

∥{ai}i∈I∥ℓp :=


(∑

i∈I
|ai|p

) 1
p

if p < ∞

sup
i∈I

|ai| if p = ∞.

Let 1 ≤ q, α, p ≤ ∞. It is well known that the space Mα
q,p is nontrivial if and only if

1 ≤ q < α < p < ∞ or 1 ≤ q ≤ α ≤ p = ∞. When 1 ≤ q < α < p ≤ ∞, Lα is properly
included in Mα

q,p, which is a linear subspace of Mα
q . Actually, the following inclusion and

equality relations hold true.

Lα ⊂ Mα
q,p ⊂ Mα

q,p1
⊂ Mα

q,∞ = Mα
q , 1 ≤ q < α < p ≤ p1 ≤ ∞. (1.2)

Many useful results, well known for Lebesgue or Morrey spaces, have been extended
to the setting of Bourgain-Morrey spaces (see [4, 10, 12] and the references therein).
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In this paper, we study in Bourgain-Morrey spaces the action of classical operators such
as maximal operators, Hardy operators, some sublinear operators and their commutators,
and the Fourier transform. We also establish in these spaces a norm equivalence of Riesz
potential and fractional maximal function. In doing so, we express the norm ∥ · ∥Mα

q,p
as

mixed-norms of the Wiener amalgam space (Lq, ℓp) (see Section 2 for its definition) and
the sequence space ℓp.

The rest of the paper is organized as follows. Section 2 deals with some preliminaries
on the norms of Wiener amalgam spaces and Bourgain-Morrey spaces. Section 3 is de-
voted to proving the boundedness of maximal operators, Hardy operators, some sublinear
operators and their commutators, and the Fourier transform in Bourgain-Morrey spaces.
In Section 4, we establish an equivalence between Mα

q,p-norms of both Riesz potential
and fractional maximal function.

2. Preliminaries on norms

We make some conventions on notations used in this paper. For 1 ≤ s ≤ ∞ , s′ denotes
the conjugate exponent of s : 1

s′ = 1 − 1
s with the convention 1

∞ = 0. We use c as a
generic positive constant whose value may change with each appearance. The expression
A ≲ B means that A ≤ cB for some independent constant c > 0 and A ≈ B means
A ≲ B ≲ A. Rd is equipped with its usual Hilbert space structure and the Euclidean
norm of x ∈ Rd is denoted by |x|. Let ρ be an element of (0,∞) and x ∈ Rd. B(x, ρ)
denotes the ball centered at x with radius ρ and λB := B(x, λρ) for all λ > 0. Let (q, p)
be an element of [1,∞]2. We set

Iρk =
d∏

j=1

[kjρ, (kj + 1)ρ) , k = (k1, k2, ..., kd) ∈ Zd

and

ρ∥f∥q,p =

∥∥∥∥{∥∥∥fχIρ
k

∥∥∥
q

}
k∈Zd

∥∥∥∥
ℓp

.

The Wiener amalgam space (Lq, ℓp) is defined by

(Lq, ℓp) =
{
f ∈ L1

loc : 1∥f∥q,p < ∞
}
. (2.1)

We recall that N. Wiener has introduced Wiener amalgam spaces [17] since 1926.
However, their systematic study began with the work of F. Holland [11] in 1975. The
paper of Fournier and Stewart [7] is a very interesting survey on these spaces. It is well
known that ((Lq, lp), 1∥ · ∥q,p) is a Banach linear subspace of L1

loc. It is also true that
{ρ∥ · ∥q,p : ρ ∈ (0,∞)} is a familly of mutually equivalent norms on (Lq, ℓp). Note that
we can consider a continuous summation instead of a discrete one. More precisely, in

definition (2.1), we can replace 1∥f∥q,p by ρ∥̃f∥q,p defined as follows:

ρ∥̃f∥q,p =

(∫
Rd

∥∥fχB(y,ρ)

∥∥p
q
dy

) 1
p

, ρ > 0 (2.2)

with the usual modification made when p = ∞. Actually, for f ∈ L1
loc and ρ > 0, we have

ρ∥̃f∥q,p ≈ ρ
d
p

ρ∥f∥q,p ≈ ρ
d
p

1∥f∥q,p. (2.3)

We shall establish other equivalences with the above norms. In order to do this, we
first prove the following preparatory result.
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Lemma 2.1. Let (m, ρ) be an element of Z × R∗
+ such that 2m ≤ ρ < 2m+1. Then the

number of elements of the set
{
ℓ ∈ Zd : I2

m

ℓ ∩ Iρk ̸= ∅
}
is at most 3d and that of the set{

k ∈ Zd : I2
m

ℓ ∩ Iρk ̸= ∅
}
is at most 2d.

Proof. Let k = (k1, k2, . . . , kd) and ℓ = (ℓ1, ℓ2, . . . , ℓd) be two elements of Zd. We have

I2
m

ℓ ∩ Iρk ̸= ∅ =⇒ ∃ x ∈ Rd : ∀ j ∈ {1, 2, . . . , d},
{

ℓj2
m ≤ xj < (ℓj + 1)2m

kjρ ≤ xj < (kj + 1)ρ.

1) Fix j in {1, 2, . . . , d}. Then there exists a unique element β of Z such that (β−1)2m ≤
kjρ < β 2m. Therefore, we have

(β − 1)2m ≤ kjρ ≤ xj < (ℓj + 1)2m = ℓj2
m + 2m

≤ xj + 2m < kjρ+ ρ+ 2m < β 2m + 2m+1 + 2m = (β + 3)2m.

Thus, we get β − 1 < ℓj + 1 < β + 3 and therefore ℓj belongs to {β − 1, β, β + 1}. Hence{
ℓ ∈ Zd : I2

m

ℓ ∩ Iρk ̸= ∅
}
⊂
{
ℓ ∈ Zd : ℓj ∈ {β − 1, β, β + 1}

}
.

Consequently, for any fixed k ∈ Zd, the number of elements of
{
ℓ ∈ Zd : I2

m

ℓ ∩ Iρk ̸= ∅
}

is at most 3d.
2) Fix j in {1, 2, . . . , d}. Then there exists a unique element λ of Z such that (λ− 1)ρ ≤
ℓj2

m < λρ. Therefore, we have

(λ− 1)ρ ≤ ℓj2
m ≤ xj < kjρ+ ρ ≤ xj + ρ < (ℓj + 1)2m + ρ < λρ+ 2ρ = (λ+ 2)ρ.

Thus, we get λ− 1 < kj + 1 < λ+ 2 and therefore kj belongs to {λ− 1, λ}. Hence{
k ∈ Zd : I2

m

ℓ ∩ Iρk ̸= ∅
}
⊂
{
k ∈ Zd : kj ∈ {λ− 1, λ}

}
.

Consequently, for any fixed ℓ ∈ Zd, the number of elements of
{
k ∈ Zd : I2

m

ℓ ∩ Iρk ̸= ∅
}

is atmost 2d.

As a consequence of Lemma 2.1, the following results hold true.

Proposition 2.2. Let (q, p) be an element of [1,∞]2 and f be an element of L1
loc. Assume

that (m, ρ) is an element of Z× R∗
+ such that 2m ≤ ρ < 2m+1. Then we have

3−
d
p 2

− d
p′

2m∥f∥q,p ≤ ρ∥f∥q,p ≤ 3
d
p′ 2

d
p

2m∥f∥q,p (2.4)

and therefore, there exist two real numbers A and B such that

3−
d
p 2

− d
p′ A 2m ∥̃f∥q,p ≤ ρ∥̃f∥q,p ≤ 3

d
p′ 4

d
p B 2m ∥̃f∥q,p. (2.5)

Proof. We only consider the case when p < ∞ because the proof of the case p = ∞ is
quite similar and hence we omit the details. We have, for k ∈ Zd,

∥fχIρ
k
∥q ≤

∑
ℓ∈Zd

∥fχIρ
k∩I2m

ℓ
∥q

≤ 3
d
p′

∑
ℓ∈Zd

∥fχIρ
k∩I2m

ℓ
∥pq

 1
p

( by Hölder inequality and Lemma 2.1).
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Therefore, we have

ρ∥f∥q,p =

∥∥∥∥{∥∥∥fχIρ
k

∥∥∥
q

}
k∈Zd

∥∥∥∥
ℓp

≤ 3
d
p′

∑
k∈Zd

∑
ℓ∈Zd

∥fχIρ
k∩I2m

ℓ
∥pq

 1
p

= 3
d
p′

∑
ℓ∈Zd

∑
k∈Zd

∥fχIρ
k∩I2m

ℓ
∥pq

 1
p

≤ 3
d
p′ 2

d
p

∑
ℓ∈Zd

∥fχI2m

ℓ
∥pq

 1
p

(by Lemma 2.1).

= 3
d
p′ 2

d
p

2m∥f∥q,p. (∗)

Similarly to what precedes, we have

2m∥f∥q,p =

∥∥∥∥{∥∥∥fχI2m

k

∥∥∥
q

}
k∈Zd

∥∥∥∥
ℓp

≤ 2
d
p′

∑
k∈Zd

∑
ℓ∈Zd

∥fχIρ
ℓ ∩I2m

k
∥pq

 1
p

= 2
d
p′

∑
ℓ∈Zd

∑
k∈Zd

∥fχIρ
ℓ ∩I2m

k
∥pq

 1
p

≤ 2
d
p′ 3

d
p

∑
ℓ∈Zd

∥fχIρ
ℓ
∥pq

 1
p

(by Lemma 2.1).

= 2
d
p′ 3

d
p

ρ∥f∥q,p. (∗∗)

Combining (∗) and (∗∗), we get (2.4).

The hypothesis implies that 2
dm
p ≤ ρ

d
p < 2

d(m+1)
p . Then, we multiply the three mem-

bers of these inequalities by that of (2.4), respectively, and so we obtain what follows:

3−
d
p 2

− d
p′ 2

dm
p

2m∥f∥q,p ≤ ρ
d
p

ρ∥f∥q,p ≤ 3
d
p′ 2

d
p 2

d(m+1)
p

2m∥f∥q,p.

Therefore, by (2.3), there exist two real numbers A and B such that

3−
d
p 2

− d
p′ A 2m ∥̃f∥q,p ≤ ρ∥̃f∥q,p ≤ 3

d
p′ 4

d
p B 2m ∥̃f∥q,p.

The proof is complete.
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Remark 2.3. Let 1 ≤ q, α, p ≤ ∞ and f ∈ L1
loc. Note that, for any k ∈ Zd and m ∈ Z,

Qk,m = I2
m

k . Thus, if p < ∞, then we have∥∥∥∥{|Qk,m|
1
α− 1

q
∥∥fχQk,m

∥∥
q

}
(k,m)∈Zd×Z

∥∥∥∥
ℓp

=

∥∥∥∥∥
{
2dm(

1
α− 1

q )
∥∥∥fχI2m

k

∥∥∥
q

}
(k,m)∈Zd×Z

∥∥∥∥∥
ℓp

=

∑
m∈Z

∑
k∈Zd

[
2dm(

1
α− 1

q )
∥∥∥fχI2m

k

∥∥∥
q

]p 1
p

=

∑
m∈Z

2dm(
1
α− 1

q )p
∑
k∈Zd

∥∥∥fχI2m

k

∥∥∥p
q

 1
p

=

(∑
m∈Z

2dm(
1
α− 1

q )p
∥∥∥∥{∥∥∥fχI2m

k

∥∥∥
q

}
k∈Zd

∥∥∥∥p
ℓp

) 1
p

=

(∑
m∈Z

[
2dm(

1
α− 1

q )
2m∥f∥q,p

]p) 1
p

=

∥∥∥∥{2dm( 1
α− 1

q )
2m∥f∥q,p

}
m∈Z

∥∥∥∥
ℓp
.

The case p = ∞ is obtained in a similar way.
From what precedes and the equality (1.1), we obtain the following new expression

of the norm of Bourgain-Morrey spaces, which is a mixture of the norms of the Wiener
amalgam space (Lq, ℓp) and the sequence space ℓp:

∥f∥Mα
q,p

=

∥∥∥∥{2dm( 1
α− 1

q )
2m∥f∥q,p

}
m∈Z

∥∥∥∥
ℓp
. (2.6)

Moreover, (2.3) shows that the norm in (2.6) is equivalent to the following:

∥̃f∥Mα
q,p

=

∥∥∥∥{2dm( 1
α− 1

q−
1
p )

2m ∥̃f∥q,p
}
m∈Z

∥∥∥∥
ℓp
. (2.7)

It clearly follows from (2.6) and/or (2.7) that the Bourgain-Morrey space Mα
q,p is

embedded in the Wiener amalgam space (Lq, ℓp).

3. Boundedness of operators

In this section, we shall take advantage of relationships of norms established in Section
2 to study the boundedness of some classical operators on Bourgain-Morrey spaces.

3.1. Maximal operators and Hardy operators

Let us recall that the Hardy-Littlewood maximal operator M is defined by

Mf(x) = sup
r>0

|B(x, r)|−1

∫
B(x,r)

|f(y)|dy , x ∈ Rd , f ∈ L1
loc.

This operator is one of the most important operators in harmonic analysis because it
controls various other important operators. This is the case of the sharp maximal function
M♯ defined below.

M♯f(x) = sup
r>0

|B(x, r)|−1

∫
B(x,r)

|f(y)− fB(x,r)|dy , x ∈ Rd , f ∈ L1
loc,
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where fB(x,r) denotes the average over B(x, r) of f , defined by

fB(x,r) = |B(x, r)|−1

∫
B(x,r)

|f(y)|dy.

A straightforward calculation shows that

M♯f(x) ≤ 2 Mf(x) , x ∈ Rd , f ∈ L1
loc. (3.1)

We also have the Hardy operator H defined by

Hf(x) = |x|−d

∫
|y|<|x|

f(y)dy , x ∈ Rd , f ∈ L1
loc.

Using the fact that |x− y| < 2 |x| in the above integral, the following pointwise estimate
holds true:

H(|f |)(x) ≲ 2d Mf(x) , x ∈ Rd , f ∈ L1
loc. (3.2)

The boundedness ofM has been studied in various Banach spaces. The one dimensional
case for Wiener amalgam spaces is contained in [1, 3]. In order to obtain the result in
the case d > 1, one may follow, with minor changes, the arguments used in the proofs of
Theorems 4.2 and 4.5 in [3].

Proposition 3.1. Let 1 < q, p < ∞. Then, for any element f ∈ L1
loc, we have

1∥Mf∥q,p ≲ 1∥f∥q,p. (3.3)

As an immediate consequence of the above proposition, we obtain the boundedness
of the Hardy-Littlewood maximal operator in Bourgain-Morrey spaces. Recall that this
result has been also proved in [10]. But our proof is more simple than the one given there.

Proposition 3.2. Let 1 < q ≤ α ≤ p < ∞. Then, for any element f ∈ L1
loc, we have

∥Mf∥Mα
q,p

≲ ∥f∥Mα
q,p

. (3.4)

Proof. If α = q or α = p then Mα
q,p = {0} and therefore we have nothing to prove. Hence

we suppose that 1 < q < α < p < ∞. The inequalities (2.3) and (3.3) imply that, for any
m ∈ Z,

2dm(
1
α− 1

q )
2m∥Mf∥q,p ≲ 2dm(

1
α− 1

q )
2m∥f∥q,p.

Therefore, taking the ℓp-norm of both sides with respect to m, we obtain (3.4) thanks to
(2.6).

Proposition 3.2 and the inequalities (3.1) and (3.2) lead to the following result.

Corollary 3.3. Let 1 < q ≤ α ≤ p < ∞. Then the operators M♯ and H are bounded in
Mα

q,p.

3.2. Sublinear operators and their commutators

In this subsection, we consider the sublinear operators T satisfying the condition

|Tf(x)| ≤ C

∫
Rd

|f(y)|
|x− y|d

dy , x /∈ supp f, (3.5)

for any f ∈ L1 with compact support. We point out that the condition (3.5) was first
introduced by Soria and Weiss [16]. This condition is satisfied by many operators such as
the Hardy-Littlewood maximal operator, Calderón-Zygmund singular integral operators,
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Bochner-Riesz operators at the critical index, and C. Fefferman’s singular multiplier.
The following result generalizes [5, Theorem 2.1], and its proof follows, with some minor
modifications, the arguments used there. The reader can also see the proof of [6, Theorem
4.5].

Theorem 3.4. Let 1 < q ≤ α ≤ p ≤ ∞. If T is a sublinear operator which is bounded
on Lq and satisfies the condition (3.5), then T is also bounded on Mα

q,p.

Proof. • If α = q or α = p < ∞ then Mα
q,p = {0} and therefore we have nothing to prove.

• The case p = ∞ is just [5, Theorem 2.1].
• Suppose that 1 < q < α < p < ∞. Fix ρ > 0, x ∈ Rd and set B := B(x, ρ). Let f be
any element of Mα

q,p. We have

f = fχ2B +
∞∑
k=1

fχ(2k+1B)\(2kB).

By the sublinearity of T and the condition (3.5), we obtain

|Tf | ≲ |T(fχ2B)|+
∞∑
k=1

∣∣2k+1B
∣∣−1
∫
2k+1B

|f(y)|dy

and therefore, an application of Hölder’s inequality leads to

|Tf | ≲ |T(fχ2B)|+
∞∑
k=1

∣∣2k+1B
∣∣− 1

q ∥fχ2k+1B∥q.

Taking the Lq-norm of both sides on the ball B and using the boundedness of T on Lq,
we get

∥(Tf)χB∥q ≲ ∥fχ2B∥q +
∞∑
k=1

(
2k
)− d

q ∥fχ2k+1B∥q .

Therefore, taking the Lp-norm of both sides, we obtain

ρ∥̃Tf∥q,p ≲ 2 ρ∥̃f∥q,p +
∞∑
k=1

(
2k
)− d

q
2k+1 ρ∥̃f∥q,p.

Let m ∈ Z such that 2m ≤ ρ < 2m+1. Therefore, by (2.5), we have

2m ∥̃Tf∥q,p ≲ 2m+1 ∥̃f∥q,p +
∞∑
k=1

(
2k
)− d

q
2m+k+1 ρ∥̃f∥q,p.

Multiplying both sides of the above inequality by 2dm(
1
α− 1

q−
1
p ), we obtain

2dm(
1
α− 1

q−
1
p )

2m ∥̃Tf∥q,p ≲ 2d(m+1)( 1
α− 1

q−
1
p )

2m+1 ∥̃f∥q,p

+
∞∑
k=1

(
2k
)d( 1

p−
1
α ) 2d(m+k+1)( 1

α− 1
q−

1
p )

2m+k+1 ∥̃f∥q,p.

Therefore, taking the ℓp-norm of both sides with respect to m, (2.7) yields

∥̃Tf∥Mα
q,p

≲

(
1 +

∞∑
k=1

(
2k
)d( 1

p−
1
α )
)
∥̃f∥Mα

q,p
.

This provides the desired result because the series on the right hand side converges.
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Let us recall that the space BMO consists of all functions b in L1
loc for which

∥b∥BMO := sup
r>0, x∈Rd

1

|B(x, r)|

∫
B(x,r)

∣∣b(x)− bB(x,r)

∣∣ dx
is finite, where bB(x,r) denotes the average over B(x, r) of b.

Let T be a linear operator and b ∈ BMO. We define the linear commutator [b,T] by

[b,T]f(x) = T(bf)(x)− b(x)Tf(x), f ∈ L1
loc , x ∈ Rd.

The next result shows the boundedness on Bourgain-Morrey spaces of the above-defined
linear commutator.

Theorem 3.5. Assume that 1 < q ≤ α ≤ p ≤ ∞. Let T be a linear operator and
b ∈ BMO. If T satisfies the condition (3.5) and [b,T] is bounded on Lq, then [b,T] is
also bounded on Mα

q,p.

Proof. • If α = q or α = p < ∞ then Mα
q,p = {0} and therefore we have nothing to prove.

• The case p = ∞ is just [5, Theorem 2.2].
• Suppose that 1 < q < α < p < ∞. Let ρ > 0 and x ∈ Rd. We set B := B(x, ρ).
Arguing as in the proof of [5, Theorem 2.2], we get

∥[b,T]χB∥q ≲ ∥fχ2B∥q +
∞∑
k=1

(
2k ρ

)−d
[∫

B

(∫
2k+1ρB

|b(y)− b(z)| |f(y)|dy
)q

dz

] 1
q

.

Therefore, using the John-Nirenberg theorem on BMO-functions (see [9, Corollary 7.1.8]),
we obtain

∥[b,T]χB∥q ≲ ∥fχ2B∥q + ∥b∥BMO

∞∑
k=1

(
2k
)− d

q ∥fχ2k+1B∥q .

We obtain the desired result thanks to the proof of Theorem 3.4.

3.3. Fourier Transform

We define the Fourier transform F on the Schwartz space S := S(Rd) of test functions
by the formula

Ff(ξ) = (2π)−
d
2

∫
Rd

f(x) e−ix·ξdx , f ∈ S, ξ ∈ Rd.

Recall that F has an extension by duality to the space of tempered distributions S ′ on
Rd, which is a linear operator also called Fourier transform and denoted by F . It is well
known that Wiener amalgam spaces are linear subspaces of S ′ and it has been proved
(see [7, Theorem 2.8]) that, if 1 ≤ q, p ≤ 2 and f is in (Lq, lp) then

1 ∥Ff∥p′,q′ ≤ c 1∥f∥q,p. (3.6)

An easy consequence of (3.6) reads as follows.

Theorem 3.6. Let us assume that 1 ≤ q ≤ α ≤ p ≤ 2 such that 1
q + 1

p = 2
α and f is an

element of Mα
q,p. Then, we have

∥Ff∥Mα′
p′,q′

≤ c ∥f∥Mα
q,p

. (3.7)
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Proof. For any m ∈ Zd, thanks to (2.3) and (3.6), we have

2m ∥Ff∥p′,q′ ≤ c 2m∥f∥q,p.

Multiplying both sides of the above inequality by 2
dm

(
1
α′ − 1

p′

)
, we obtain

2
dm

(
1
α′ − 1

p′

)
2m ∥Ff∥p′,q′ ≤ c 2dm(

1
p−

1
α )

2m∥f∥q,p.

Note that the hypothesis 1
q + 1

p = 2
α implies that 1

p − 1
α = 1

α − 1
q and therefore∥∥∥∥{2dm(

1
α′ − 1

p′

)
2m ∥Ff∥p′,q′

}
m∈Z

∥∥∥∥
ℓq′

≤ c

∥∥∥∥{2dm( 1
α− 1

q )
2m∥f∥q,p

}
m∈Z

∥∥∥∥
ℓq′

.

Since 1 ≤ q ≤ 2, we have 2 ≤ q′ ≤ ∞ and so 1 ≤ p ≤ q′ ≤ ∞. Thus, we get∥∥∥∥{2dm(
1
α′ − 1

p′

)
2m ∥Ff∥p′,q′

}
m∈Z

∥∥∥∥
ℓq′

≤ c

∥∥∥∥{2dm( 1
α− 1

q )
2m∥f∥q,p

}
m∈Z

∥∥∥∥
ℓp

and therefore (2.6) leads to

∥Ff∥Mα′
p′,q′

≤ c ∥f∥Mα
q,p

.

The proof is complete.

4. Equivalence of norms of Riesz potential and fractional maximal
function in Bourgain-Morrey spaces

Let 0 < γ < d. The Riesz potential operator Iγ is defined by

Iγf(x) =

∫
Rd

f(y)

|x− y|d−γ
dy

when this integral makes sense. This operator is known to be closely related to the
fractional maximal operator Mγ defined on L1

loc by

Mγf(x) = sup
r>0

|B(x, r)|
γ
d−1

∫
B(x,r)

|f(y)|dy , x ∈ Rd.

The following pointwise control is well known:

Mγf(x) ≲ Iγ(|f |)(x) , x ∈ Rd , f ∈ L1
loc. (4.1)

Note that the boundedness on Bourgain-Morrey spaces of the Riesz potential and the
fractional maximal operator has been studied by Hatano et al. (see Theorem 4.4 and
Corollary 4.5 in [10]). Furthermore, the first author proved in [4] an extension of the
Hardy-Littlewood-Sobolev theorem to the setting of these spaces. In this section, we
establish in Bourgain-Morrey spaces a norm equivalence of Iγ and Mγ when we deal with
non-negative measurable functions. Recall that analogous results have been obtained for
Morrey spaces in [8] and for the so-called Fofana spaces (Lq, ℓp)α in [6]. Our result reads
as follows.

Theorem 4.1. Let 1 < q ≤ α ≤ p ≤ ∞ with q < ∞ and 0 < γ < d. Then, for any
non-negative element of L1

loc, we have

∥Iγf∥Mα
q,p

≈ ∥Mγf∥Mα
q,p

. (4.2)
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Proof. In view of Inequality (4.1), we only need to show that

∥Iγf∥Mα
q,p

≲ ∥Mγf∥Mα
q,p

.

• If α = q or α = p < ∞, then Mα
q,p = {0} and therefore, we have nothing to prove.

• The case p = ∞ is just [8, Corollary 5.4].
• Suppose that 1 < q < α < p < ∞. Let ρ > 0 and x ∈ Rd. We set B := B(x, ρ).
According to [8, Theorem 1.10], we have

∥(Iγf)χB∥q ≈ ∥(Mγf)χB∥q + |B|
1
q

∫
Rd\B

f(y)

|x− y|d−γ
dy. (4.3)

Furthermore, we have

|B|
1
q

∫
Rd\B

f(y)

|x− y|d−γ
dy = |B|

1
q

∞∑
k=0

∫
2kρ≤|x−y|<2k+1ρ

f(y)

|x− y|d−γ
dy

≲
∞∑
k=0

(2k)−
d
q |B|

1
q |2k+1B|−1+ γ

d ∥fχ2k+1B∥1 .

Therefore, [8, Lemma 2.9] implies that

|B|
1
q

∫
Rd\B

f(y)

|x− y|d−γ
dy ≲

∞∑
k=0

(2k)−
d
q ∥(Mγf)χB∥q . (4.4)

Since the series on the right hand side of (4.4) converges, it follows from (4.3) that

∥(Iγf)χB∥q ≲ ∥(Mγf)χB∥q.
This immediately implies the following desired result

∥Iγf∥Mα
q,p

≲ ∥Mγf∥Mα
q,p

.

This ends the proof.

Acknowledgment

The authors are grateful to the anonymous referees for their careful reading of the
manuscript and useful remarks.

References

[1] C. Aguilor, S. Ortega, Boundedness of positive operators on weighted amalgams, J.
Inequal. Appl. 13 (2011).

[2] J. Bourgain, On the restriction and multiplier problems in R3, in: Geometric Aspects
of Functional Analysis (1989-90), in: Lecture Notes in Math., Springer, Berlin 1469
(1991), 179-191.

[3] C. Carton-Lebrun, H.P. Heinig, S.C. Hofmann, Integral operators on weighted amal-
gams, Studia Math. 109 (1994), 133-157.

[4] N. Diarra, Hardy-Littlewood-Sobolev theorem for Bourgain-Morrey spaces and ap-
proximation, Eur. J. Math. Anal. 4 (2024) 16.

[5] D. Fan, S. Lu, D. Yang, Regularity in Morrey spaces of strong solutions to non-
divergence elliptic equations with VMO coefficients, Georgian Math. J. 5 (1998),
425-440.



Boundedness of some classical operators in Bourgain-Morrey spaces 79

[6] J. Feuto, Norm inequalities in some subspaces of Morrey space, Ann. Math. Blaise
Pascal 21 (2) (2014), 21-37.

[7] J. Fournier, J. Stewart, Amalgams of Lp and Lq, Bull. Am. Math. Soc. 13 (1985),
1-21.

[8] A. Gogatishvili, R. Mustafayev, Equivalence of norms of Riesz potential and frac-
tional maximal function in generalized Morrey spaces, Collect. Math. 63 (2012),
11-28.

[9] L. Grafakos, Modern Fourier analysis, second edition, Graduate Texts in Math. 250,
Springer, New York, 2009.

[10] N. Hatano, T. Nogayama, Y. Sawano, D.I. Hakim, Bourgain-Morrey spaces and their
applications to boundedness of operators, J. Funct. Anal. 284 (2023), 109720.

[11] F. Holland, Harmonic Analysis on amalgams of Lp and ℓq, J. Lond. Math. Soc. 10
(1975), 295-305.

[12] S. Masaki, J. Segata, Existence of a minimal non-scattering solution to the mass-
subcritical generalized Korteweg-de Vries equation, Ann. I. H. Poincaré - AN (2018),
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