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Abstract The Legendre-Fenchel transform, which maps a function to its convex conjugate, provides

a dual perspective that is fundamental in understanding optimization problems. In this work, we show

that m−convex function in n−dimensional normed spaces can be viewed as the Legendre-Fenchel dual

problem. By constructing an epi-graph of m-convexity in n-dimensional normed spaces, we obtained some

properties including the Legendre transform. Particularly, we prove this for certain convex functions.
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1. Introduction

Convexity is a fundamental principle in both mathematics and physics, conceals a hid-
den duality that reveals deep links between principal and dual spaces. The essence of
this concept is the transformative Legendre transform, which highlights the symmetries
between convex functions and their conjugates [2, 12]. The utility of convexity is high-
lighted by its property of preserving inequalities, rendering it indispensable in fields such
as optimization, economics, and others [4, 7].

Legendre transform has been harnessed to address complex problems across various dis-
ciplines. In optimizing diverse systems, from solving the original Hamilton–Jacobi–Bellman
(HJB) equation [1] and in control theory to reducing the Cramer-Lundberg (C-L) risk
model in actuarial science [13]. Particularly noteworthy is its role in tackling challenges
like High Absolute Risk Aversion (HARA), a phenomenon prevalent in decision theory
and economics. In real Banach spaces, duality can be used to obtain stability of epsilon-
isometry[9]. In the field of elasticity, the displacement-traction issue in three-dimensional
linearized elasticity can be regarded as Legendre-Fenchel dual problems[3].

For the general convex function, the duality Legendre-Fenchel problem has been shown
in [10]. In this work, we investigate the necessary conditions for the duality Legendre-
Fenchel ofm-convex functions in n-dimensional spaces. Additionally, we provide examples
of some convex functions to illustrate this. We examine the relationship between principal
and dual problems within both m−convexity and convexity.
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2. Preliminaries and Basic Facts

In this part, we recall some notations, definitions, and preliminary facts which are
needed throughout this work.

A convex set is denoted Ω and the lower limit of the convex function f is denoted j.
The domain of function f is denoted Df . The dual space of a normed vector space X
is denoted by X∗ and the bidual space of X is denoted X∗∗. Therefore, m−convex set
(convex set with respect to m ∈ [0, 1]) is denoted by Ωm.

Definition 2.1 (Convex function, [6, 10, 11]). Let Ω be a convex set, the function
f = f(x) with x ∈ Ω is said to be convex if x, y ∈ Ω and α ∈ [0, 1] imply

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y). (2.1)

Definition 2.2 (Strongly convex function, [6, 8]). Let c be a positive real number. A
function f is said to be strongly convex function with modulus c if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)− c

2
α(1− α) ∥x− y∥2 , (2.2)

with x,y ∈ Ω, and α ∈ [0, 1].

A convex function f : Rn → (−∞,+∞] is proper if {x ∈ Ω; f(x) < +∞} ≠ ∅. It is
said to be lower semi-continuous if xj → x∗ imply f(x∗) ≤ lim inf f(xj). The function
f is said to be coercive if lim

|x|→+∞
f(x) = +∞, and is called bounded from below if

j = inf
x∈Rn

f(x) > −∞.

Theorem 2.3 ([10]). Any proper, lower semi-continuous, coercive function attains a
minimum if it is bounded from below.

Let f : Rn → (−∞,+∞] be a proper function. The Legendre-transform of f is the
function f∗ : Rn∗ → (−∞,+∞], given by

f∗(ξ) = sup
x∈Rn

{x · ξ − f(x)}.

Theorem 2.4 ([10]). If f : Rn → (−∞,+∞] is proper, convex, and lower semi-continuous,
then each x0 ∈ Rn and −∞ < c0 < f(x0) takes affine function on Rn denoted by
h(x) = a · x+ b such that

h(x0) = c0, h(x) < f(x), x ∈ Rn.

Theorem 2.5 ([10]). If f : Rn → (−∞,+∞] is proper, convex, and lower semi-continuous,
then so is f∗.

Theorem 2.6 ([10]). If f : Rn → (−∞,+∞] is proper, convex, and lower semi-continuous,
then

f∗∗(x) = sup
ξ
{ξ · x− f∗(ξ)} = f(x). (2.3)

3. Legendre transform for some convex function

Proposition 3.1. Df is a convex set if f : Rn → (−∞,+∞] is a convex function.

Proof. Since f is convex, for all x,y ∈ Df and α ∈ [0, 1], the inequality (2.1) holds, and
it follows that αx+ (1− α)y ∈ Df . Therefore, Df is a convex set.
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Proposition 3.2. Let f : Rn → (−∞,+∞] be defined by f(x) = a ·x+ c, where a ∈ Rn

and c ∈ R. The Legendre transform of f satisfies equation (2.3).

Proof. If x ∈ Df , then the Legendre transform of f satisfies

f∗(ξ) = sup
x∈Df

{x · ξ − f(x)} ≥ x · ξ − f(x),

which implies

f∗∗(x) = sup
ξ∈Df∗

{x · ξ − f∗(ξ)}

≤ sup
ξ∈Df∗

{x · ξ − (x · ξ − f(x))} = f(x). (3.1)

For the reverse inequality, we consider

f∗(ξ) = sup
x∈Df

{x · ξ − f(x)} = sup
x∈Df

{x · ξ − (a · x+ c)}.

Taking ξ = a, we have

f∗(a) = sup
x∈Df

{x · a− (a · x+ c)} = −c. (3.2)

From (3.2) and for all x ∈ Df , we obtain

f(x) = a · x+ c = a · x− f∗(a) ≤ sup
a∈Df∗

{a · x− f∗(a)} = f∗∗(x). (3.3)

.

In [10], the subdifferential of f at x ∈ Df denoted by ∂f(x) indicates the set of ξ
satisfying

f(y) ≥ f(x) + ξ · (y − x), y ∈ Rn. (3.4)

Proposition 3.3. Let f : Rn → (−∞,+∞] be defined by f(x) = a ·x+ c, where a ∈ Rn

and c ∈ R. If ξ0 ∈ ∂f(x0), then the Legendre transform of f satisfies Fenchel’s Identity

f(x0) + f∗(ξ0) = x0 · ξ0. (3.5)

Proof. By the definition, ξ0 ∈ ∂(x0) we have

f(x) ≥ f(x0) + ξ0 · (x− x0), x ∈ Rn.

and, in particular, f(x0) < +∞, then we can rewrite as

ξ0 · x0 − f(x0) ≥ ξ0 · x− f(x)

= sup
x∈Rn

{ξ0 · x− f(x)} = f∗(ξ0).

Thus, we obtain (3.5).

Example 3.4. Let A : Rn → Rm be a matrix and b ∈ Rm. Given f(x) = 1
2 |Ax− b|2,

f satisfies (2.3).
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Proof. If x ∈ Df , then the Legendre transform of f satisfies the inequality (3.1). Thus,
it is sufficiently proven otherwise.

f∗(ξ) = sup
x∈Df

{x · ξ − f(x)}

= sup
x∈Df

{
x · ξ − 1

2
|Ax− b|2

}
≥ x · ξ − 1

2
|Ax− b|2 .

Then, we have

1

2
|Ax− b|2 ≥ x · ξ − f∗(ξ).

By taking supremum on the right side with respect to the ξ, we obtain

f(x) =
1

2
|Ax− b|2 = sup

ξ∈Df∗
{x · ξ − f∗(ξ)} = f∗∗(x).

In [10], for the general convex function, the relation between principal and dual Legendre-
Fenchel has been introduced. Given a function ψ : Rn × Rm → (−∞,+∞], let

(X) inf{ψ(x, 0)|x ∈ Rn}
(X∗) sup{−ψ∗(0, q)|q ∈ Rm}.

The normed vector spaces X be the principal and the dual problem denotes by X∗. Here,
the expression

ψ∗(p, q) = sup
(x,y)∈Rn×Rm

{x · p+ y · q − ψ(x,y)}

= sup
x∈Rn

{x · p+ sup
y∈Rm

(y · q − ψ(x,y))},

represents the Legendre transformation of ψ(x,y). Let Φ : Rm → (−∞,+∞] given by

Φ(y) = inf
x∈Rn

{ψ(x, y)},

is proper, convex, and lower semi-continuous. Then

ψ∗(0, q) = sup
x,y

{y · q − ψ(x,y)}

= sup
y

{y · q − Φ(y)} = Φ∗(q),

it follows that

sup
q
{−ψ∗(0, q)} = sup

q
{−Φ∗(q)}

= sup
q
{0 · q − Φ∗(q)}

= Φ∗∗(0) = Φ(0) = inf
q
{ψ(x, 0)}.

Thus, the problem (X) and (X∗) have the same value known as the Kuhn-Tucker duality.
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4. Legendre-Fenchel on m−convexity

Inequalities in m−convexity and necessary conditions for the Legendre transformation
are utilized to derive the Legendre-Fenchel duality on m−convexity.

Definition 4.1 ([5]). Let m ∈ [0, 1]. A function f : Ωm → [0,+∞] is called m−convex
function if for any x,y ∈ Ωm and α ∈ [0, 1], we have

f(αx+m(1− α)y) ≤ αf(x) +m(1− α)f(y). (4.1)

Lemma 4.2. Let m ∈ [0, 1] and Ωm ⊂ Rn be a m−convex set. Then f(x) : Ωm → R is
m−convex if and only if its epi-graph given by

epi(f) = {(x, y) | x ∈ Ωm ⊂ Rn, y ≥ f(x)} ⊂ Rn+1, (4.2)

is m−convex in Rn+1.

Proof. Let m ∈ [0, 1]. Since f is m−convex function for all x,y ∈ Ωm, α ∈ [0, 1], we have

f(αx+m(1− α)y) ≤ αf(x) +m(1− α)f(y).

For any (x1, y1), (x2, y2) ∈ epi(f) such that f(x1) ≤ y1 and f(x2) ≤ y2, we obtain

f(αx1 +m(1− α)x2) ≤ αf(x1) +m(1− α)f(x2) ≤ αy1 +m(1− α)y2. (4.3)

From (4.3), we can conclude that

α(x1, y2) +m(1− α)(x2, y2) = (αx1, αy1) + (m(1− α)x2,m(1− α)y2)

= (αx1 +m(1− α)x2, αy1 +m(1− α)y2) ∈ epi(f).

Theorem 4.3. Let m ∈ [0, 1]. If f : Ωm → [0,+∞] is proper, m−convex, and lower
semi-continuous, then so is f∗.

Proof. Let m ∈ [0, 1]. For each x ∈ Ωm ̸= 0 take the affine function

ψx(ξ) = x · ξ − f(x),

of which epigraph epi(ψx) = {(ξ, y)|ξ ∈ Ω∗
m, y ≥ ψx(ξ)}. For any (ξ1, y1), (ξ2, y2) ∈

epi(ψx) such that ψx(ξ1) ≤ y1 and ψx(ξ2) ≤ y2, we obtain

ψx(αξ1 +m(1− α)ξ2) = x · (αξ1 +m(1− α)ξ2)− f(x)

= αx · ξ1 +m(1− α)x · ξ2 − f(x)

= αψx(ξ1) +m(1− α)ψx(ξ2)− (1−m)(1− α)f(x).

Since f(x) ≥ 0 we have

ψx(αξ1 +m(1− α)ξ2) ≤ αψx(ξ1) +m(1− α)ψx(ξ2).

Thus, ψx is a m−convex function and

epi(f∗) =
⋂

x∈Ωm

epi(ψx),

therefore, f∗(ξ) is m−convex and lower semi-continuous. To demonstrate that Ω∗
m ̸= 0,

consider a ∈ Ωm and b ∈ R such that

a · x+ b < f(x).
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Consequently,

f∗(ξ) = sup
x∈Ωm

{x · ξ − f(x)} ≤ sup
x∈Ωm

{(ξ − a) · x− b},

implies f∗(a) ≤ −b.

5. Concluding Remarks

In this paper, we introduce the Legendre-Fenchel transform for m-convex functions
in n-dimensional spaces. We present examples of convex functions and establish the
relationship between the principal and dual problems in both m-convexity and convexity.
Specifically, we establish the necessary condition for an m−convex function, which is a
function exhibiting m−convexity must be non-negative valued. Additionally, for m = 1,
we encounter the original convexity problem, while for m ∈ [0, 1), we deal with a general
function that is not necessarily strictly convex. Further research could be conducted on
the convolution of the functional equation in both the principal and dual problems.
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