
ISSN 2985-7619

Hilbert Journal of Mathematical Analysis

Volume 2 Number 2 (2024)

Pages 080–091

https://hilbertjma.org

The Effects of Crowding and Toxicant on Biological

Food - Chain System: A Mathematical Approach

Raveendra Babu A., Srajan Gupta, Nisha Rathaur* , Tanishka Agarwal and Mamta Sharma

Department of Mathematics, Prestige Institute of Management and Research, Gwalior-474 020, India
e-mail: raveendra96@rediffmail.com; Tel: +91-930-372-4455.

Abstract This work considers and studies a prey-predator mathematical system to explain the behavior

and impacts of a food-chain system in the presence of toxicants and crowding. According to the system,

only prey species defend themselves by releasing toxins. Using stability requirements, all possible equi-

librium points of the system are discussed for local stability. It has been noted that when the toxicant

or crowding effect is present, the system under consideration will survive. Lastly, numerical simulation

is done to validate the analytical findings.
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1. Introduction

Within an ecosystem, interactions occur between every living creature and its sur-
roundings. An ecosystem’s productivity, stability, and balance depend on continuing
interactions. Predation, or the interaction between a predator and prey, is one type of
interaction in an ecosystem, Molla et al. (2022) [8] and Manaqib et al. (2022) [4]. Restor-
ing balance in the populations of predators and prey within an ecosystem is one of the
objectives of this interaction. Predators keep prey populations in check, which harms the
lower levels of the food chain. A predator, on the other hand, will run out of food to
survive without prey.

Many species in the ecosystem have been driven to extinction by unchecked and uneth-
ical emissions of toxins into the environment. Prey predator species also face significant
threats to their existence and may go extinct entirely if the situation is not controlled.
Marine populations accumulate the majority of toxicants or pollutants and are then trans-
ferred to other populations of prey predators throughout the food chain, potentially af-
fecting higher trophic levels. Fascinatingly, in the habitat of prey and predator, animals
employ various tactical methods or strategies to defend themselves, employing toxins as
their weapons. These species discharge toxicants or pollutant compounds to preserve
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their habitat or populations. Thus, the impact of harmful substances on prey-predator
populations is a noteworthy and crucial subject to examine, Babu et al. (2022) [2], Kad-
him et al. (2020) [3], Misra et al. (2017) [7], Misra et al. (2016) [5], Misra et al. (2016)
[6], and Turner et al. (1997) [11].

Patchy distributions, in which certain populations, referred to as patches, have a higher
population density than others, are synonymous with crowding. Ecological differential
equation models have employed Lloyd’s mean crowding index as a crowding indicator,
Vallejos et al. (2020) [12], Subbey et al. (2020) [10], Waters (2014) [13]. The impact of
crowding-specific viruses has been studied, and a model has been defined by the authors
Pandey et al. (2022) [9]. They have provided a significant explanation and model inter-
pretation. The main cause of the increasing COVID-19 case trend is crowding and many
more. The impacts of overpopulation on the population as a whole can be predicted with
the use of mathematical modeling. The prospective negative effects of crowding on the
heart and lungs of adult albino rats, as well as the potential benefit of a combination
sulpiride treatment, were examined by the authors of the research experiment by Amara
et al. (2014) [1]. Only the rats that were subjected to overcrowding in the study displayed
extremely detrimental alterations to their lungs, including thickening of the interalveolar
septa and obliteration of the alveoli, infiltration of inflammatory cells within the pul-
monary interstitium, fibrosis, and infiltration of the peribronchial, thickening of the walls
of the pulmonary blood vessels, deposition of interstitial collagen fibers, and apoptotic
cellular changes. At the heart level, the sulpiride category showed a substantial decline
in the diameters of the cardiac strength fibers with focal areas of necrosis, apoptotic
alterations, and increased deposition of collagen fibers.

In this paper, a food chain prey-predator model of biological example is considered and
studied. This model is inspired by Manaqib et al. (2022) [4] and discusses the impact
of toxic substances and the crowding effect on prey-predator populations. A qualitative
analysis of the model is conducted, and numerical simulations are used to corroborate the
findings.

2. The Mathematical Model

2.1. Assumptions

The assumptions that are considered to construct a food chain mathematical system
with the effect of crowding and toxicants are given below:

The prey population has an intrinsic growth rate. The food chain is having the interac-
tions between prey, intermediate predators, and top predators. To ensure its survival, the
prey has the ability to create harmful substances. The population of top predators does
not feed on the population of prey. Predation of prey determines the expansion of the
predator population, while predation of intermediate predators determines the develop-
ment of the top-last predator population. In populations of prey, intermediate predators,
and top predators, intraspecific rivalry is taken into account. Migration does not exist as
a consequence of population density, sometimes known as crowding effects.

Table 1 lists the variables and parameters together with the appropriate presumptions
and definitions for the mathematical framework of the food chain.
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Table 1. List of variables and parameters, and meanings.
Symbol Meaning Type Condition
X(t) The density of the prey population Variable X(t) ≥ 0
Y (t) The density of the intermediate preda-

tor population
Variable Y (t) ≥ 0

Z(t) The density of the top predator popu-
lation

Variable Z(t) ≥ 0

C0 The intrinsic growth rate of prey Parameter C0 > 0
C1 The strength of competition among in-

dividuals of species prey
Parameter C1 ≥ 0

C2 The predation rate of prey population Parameter C2 ≥ 0
C3 The rate which prey is capable to pro-

duce toxic substance for its survival
Parameter C3 ≥ 0

C4 The conversion rate Parameter C4 ≥ 0
C5 The predation rate of intermediate

predator population
Parameter C5 ≥ 0

C6 The natural death rate of intermediate
predator

Parameter C6 ≥ 0

C7 The strength of competition among in-
dividuals of intermediate predator pop-
ulation

Parameter C7 ≥ 0

C8 The conversion rate Parameter C8 ≥ 0
C9 The natural death rate of top predator Parameter C9 ≥ 0
C10 The strength of competition among in-

dividuals of top predator population
Parameter C10 ≥ 0

2.2. Formulation of Model

A mathematical model of a food chain that takes the form of a system of nonlinear
differential equations can be created based on certain assumptions:

dX

dT
= C0X − C1X

2 − C2XY − C3X
2Y

dY

dT
= C4XY − C5Y Z − C6Y − C7Y

2 (2.1)

dZ

dT
= C8Y Z − C9Z − C10Z

2

Using the following scaling transformations, we can decrease the number of parameters
in the system (2.1) mentioned above:

X =
C0x

C1
, Y =

C2
0y

C1C2C3
, Z =

C3
0z

C1C2C3C11
, T =

t

C0
,

dX =
C0dx

C1
, dY =

C2
0dy

C1C2C3
, dZ =

C3
0dz

C1C2C3C11
, dT =

dt

C0
.
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Then system (2.1) becomes:

dx

dt
= x(1− x)− axy − bx2y

dy

dt
= dxy − eyz − fy − gy2 (2.2)

dz

dt
= hyz − kz − jz2

a =
C0

C1C3
, b =

C2
0

C2
1C2

, d =
C4

C1
, e =

C2
0

C1C2C10
, f =

C6

C0
,

g =
C7C0

C1C2C3
, h =

C0C8

C1C2C3
, k =

C9

C0
j =

C2
0

C0C2C5
.

It is evident that the system (2.2) has continuous interaction functions and continuous
partial derivatives on the subsequent positive three-dimensional spaces:

R3
+ =

{
(x, y, z) ∈ R3

+ : x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0
}
.

Therefore, the solution of the system (2.2) is unique and exists.

3.Model Analysis

We shall now locate the system’s equilibrium points (2.2). The food chain model’s equi-

librium points can be found if dx
dt = dy

dt = dz
dt = 0. The system (2.2) has following four

non-negative equilibrium points in x, y, z space namely, Ê0(0, 0, 0), Ë1(ẍ, 0, 0), Ẽ2(x̃, ỹ, 0)

and Ē3(x̄, ȳ, z̄). We prove the existence of Ê0, Ë1, Ẽ2 and Ē3 as follows: The existence

of Ê0 is obvious.

3.1. Ë1(ẍ, 0, 0) equilibrium point:

From the first equation of (2.2), we get 1− ẍ = 0, that is

ẍ = 1. (3.1)

3.2. Ẽ2(x̃, ỹ, 0) equilibrium point:

From the first equation of (2.2), we get

x̃ = 1− aỹ − bỹ2, (3.2)

x̃ > 0 if 1 > aỹ + bỹ2. From the second equation of (2.2) and (3.2), we get

A1ỹ
2 +A2ỹ −A3 = 0 (3.3)

where, A1 = db, A2 = (ad+ g) and A3 = d− f > 0. The Equation (3.3) will always have
a positive root ỹ.
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3.3. Ē3(x̄, ȳ, z̄) equilibrium point:

From the first equation of (2.2), we get

x̄ = 1− aȳ − bȳ2, (3.4)

x̄ > 0 if 1 > aȳ + bȳ2. From the third equation of (2.2), we get

z̃ =
hȳ − k

j
, (3.5)

z̄ > 0 if hȳ > k. Using (3.4) and (3.5), in second equation of (2.2), we get

B1ȳ
2 +B2ȳ −B3 = 0 (3.6)

where, B1 = dbj, B2 = (ajd+ eh+ jg) and B3 = (dj + ek− jf) > 0. The Equation (3.6)
will always have a positive root ȳ.

3.4. Stability of Model

The system (2.2) aims to determine the stability of equilibrium by calculating the eigen-
values of the variational matrix concerning each equilibrium.

J(f(x, y, z)) =



∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z


where,

dx

dt
= f1(x, y, z),

dy

dt
= f2(x, y, z), and

dz

dt
= f3(x, y, z). The J(f(x, y, z)) elements

are:

∂f1
∂x

= 1− 2x− ay − by2,
∂f1
∂y

= −ax− bxy,
∂f1
∂z

= 0,

∂f2
∂x

= dy,
∂f2
∂y

= dx− ez − f − 2gy,
∂f2
∂z

= −ey,

∂f3
∂x

= 0,
∂f3
∂y

= hz,
∂f3
∂z

= hy − k − 2jz.

Theorem 3.1. The equilibrium point Ê0 is unstable.

Proof. When we input the point of equilibrium Ê0 in J(f(x, y, z)), then the matrix

J(f(Ê0)) is given by

J(f(Ê0)) =

 1 0 0
0 −f 0
0 0 −k


and the characteristic equation is

(λ− 1)(f + λ)(λ+ k) = 0.

Thus, the eigenvalues are λ1 = 1, λ2 = −f and λ3 = −k. Here, λ1 > 0, therefore
Ê0 = (0, 0, 0) is unstable.
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Theorem 3.2. If 1
2 < ẍ and ẍ < f

d , then the point of equilibrium Ë1(1, 0, 0) is locally
stable (asymptotically).

Proof. When we input the point of equilibrium Ë1 in J(f(x, y, z)), we obtain matrix

J(f(Ë1) as

J(f(Ë1)) =

 1− 2ẍ −aẍ 0
0 dẍ− f 0
0 0 −k


and the characteristic equation is given by

(λ+ 2ẍ− 1)(λ+ f − dẍ)(λ+ k) = 0.

Thus, the eigenvalues are λ1 = 1− 2ẍ, λ2 = dẍ− f and λ3 = −k. The point Ë1 is locally
stable (asymptotically) if λ1 < 0 and λ2 < 0 hold, i.e.,

1

2
< ẍ

and

ẍ <
f

d
.

Therefore, Ë1 is locally stable (asymptotically) if 1
2 < ẍ and ẍ < f

d .

Theorem 3.3. If hỹ < k, p1 > 0, and p2 > 0, then the equilibrium point Ẽ2(x̃, ỹ, 0) is
locally stable (asymptotically), where p1 = a1 + a3 − dx̃ − 1, p2 = a1a3 + dỹa2 + dx̃ −
a3 − a1dx̃, a1 = 2x̃+ aỹ + bỹ2, a2 = x̃(a+ bỹ) and a3 = f + 2gỹ.

Proof. When the equilibrium point Ẽ2 is substituted in J(f(x, y, z)), we get

J(f(Ẽ2)) =

 1− a1 −a2 0
dỹ dx− a3 −eỹ
0 0 hỹ − k


where, a1 = 2x̃+aỹ+bỹ2, a2 = x̃(a+bỹ), a3 = f+2gỹ. Then the characteristic equation

for J(f(Ẽ2)) is given by

(hỹ − k − λ)(λ2 + p1λ+ p2) = 0, (3.7)

where p1 = a1+a3−dx̃−1, p2 = a1a3+dỹa2+dx̃−a3−a1dx̃. Thus, the one eigenvalue
is λ1 = hỹ − k < 0, and other two eigenvalues will be considered by Routh-Hurwitz’s
criteria that p1 > 0 and p2 > 0 must be satisfied. Then by our assumption, Ẽ2 is locally
stable (asymptotically) i.e.,

hỹ < k,

p1 > 0, and p2 > 0.

Theorem 3.4. The equilibrium point Ē3(x̄, ȳ, z̄) is locally asymptotically stable for the
system (2.2).
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Proof. Let Ē3 be substituted in J(f(x, y, z)). We get

J(f(Ē3)) =

 1−m1 −m2 0
dy dx−m3 −ey
0 hz hy −m4


where m1 = 2x + ay + by2, m2 = ax + bxy, m3 = ez + f + 2gy, k + 2jz. Then, the
characteristic equation for J(f(Ẽ3) is given by

λ3 +M1λ
2 +M2λ+M3 = 0 (3.8)

where, M1 = m1+m3+m4−1−dx−hy, M2 = m1m3+m1m4+m3m4+m2dy+heyz+
dx+hy+ dhxy−m3−m4−m1dx−m1hy− dxm4−m3hy, M3 = m1m3m4+m1dhxy+
m1heyz+m2m4dy+m4dx+m3hy−dhxy−m3m4−heyz−m1m4dx−m1m3hy−m2dhy

2.
By Routh-Hurwitz’s criteria, E3 is locally stable (asymptotically) since the given condi-
tions is satisfied

(m1 +m3 +m4) > (1 + dx+ hy),

M2 > 0 i.e., m1(m3+m4)+m3m4+dy(m2+hx)+hy(1+ez)+dx > m3(1+hy)+m1(dx+
hy)+m4(1+dx), M3 > 0 i.e., (m1m3m4+m1dhxy+m1heyz+m2m4dy+m4dx+m3hy) >
(dhxy +m3m4 + heyz +m1m4dx+m1m3hy +m2dhy

2) and M1M2 > M3 > 0.
Although it is challenging to understand the conclusions in ecological terms from the
above complex expressions, graphs and numerical examples are used to show the system’s
dynamic behavior.

4.Model Simulation

Matlab software is used to do numerical simulations. Each equilibrium point in the
system (2.1) is simulated numerically, as well as simulations with various parameter mod-
ifications. The main purpose of the simulation is to check the dynamical behavior of
prey-predator populations in the presence of toxicants and crowding, and also to verify
the analytical results with numerical simulations. All the figures represent stability in the
simulation.

Several authors have studied prey-predator mathematical numerical simulations by
considering different parameter values for each equilibrium point [2, 5–7]. These param-
eter values are used for numerical simulations: C0 = 1.8;C1 = 0.09;C2 = 0.8;C3 =
0.3;C4 = 0.44;C5 = 1;C6 = 0.1;C7 = 0.09;C8 = 0.2;C9 = 0.1;C10 = 0.21; and the initial
values are taken as X(0) = 1;Y (0) = 1;Z(0) = 1; and also the time range is taken from
0 to 200.

For Ê0, by increasing the rate of crowding of prey population (C1 = 0.09 to 3894),

then in Ê0, all populations will die out; the results are shown in Figure 1. The duration
varied from 0 to 50. Figure 1 tells the instability of Ê0. That is, the ecosystem does not
occur for this population.
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Figure 1. Instability behavior for Ê0.

For the equilibrium point Ë1, only the prey population survives, whereas the preda-
tor population tends to become extinct with the given parameter values: C0 = 2;C1 =
0.05;C2 = 0.5;C3 = 0.3;C4 = 0.08;C5 = 0.03;C6 = 0.08;C7 = 0.07;C8 = 0.22;C9 =
0.551;C10 = 0.981, so the prey predator population is shown in Figure 2. The prey pop-
ulation increases i.e., Ẍ = 1 in the absence of predator populations (see Table 2). All the
conditions of Theorem 2 are verified by given parameter values.

Figure 2. Stability behavior for Ë1.



88 Hilbert J. Math. Anal. Vol. 2-2 (2024) /Raveendra Babu A. et al.

For the equilibrium point Ẽ2, only prey and intermediate predator populations survive,
whereas the top predator population tends to become extinct with the given parameter
values: C0 = 2;C1 = 0.05;C2 = 0.5;C3 = 0.3;C4 = 0.08;C5 = 0.03;C6 = 0.08;C7 =
0.07;C8 = 0.22;C9 = 0.551;C10 = 0.981, so the prey predator population is shown in
Figure 3. The populations i.e., Ẽ2 (2.3638, 1.5567, 0) in the absence of top predator pop-
ulations (see table 2). All the conditions of Theorem 3 are verified by given parameter
values.

Figure 3. Stability behavior for Ẽ2.

For the equilibrium point Ē3, all the populations would survive with the given param-
eter values: C0 = 1.8;C1 = 0.09;C2 = 0.8;C3 = 0.3;C4 = 0.44;C5 = 1;C6 = 0.1;C7 =
0.09;C8 = 0.2;C9 = 0.1;C10 = 0.21, so the prey-predator population is shown in Figure 4.
The populations’ values i.e., Ē3(1.9337, 1.1770, 0.6454) (see table 2). All the conditions
of Theorem 4 are verified by given parameter values.

Figure 4. Stability behavior for Ē3.

For Ē3, the system (2.1) is verified by not considering toxicant. That means the system
only studied crowding. It has been observed that all the prey and predator populations
increased in values when we compared them with Ē3 values (see Table 2) and are stable.
So the prey predators are shown in Figure 5, and the populations’ values i.e., Ē3(3.7115,
1.8329, 1.2690) (see table 1)(without toxicant case).
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Figure 5. Stability behavior for Ē3 (without toxicant effect case).

Figure 6. Stability behavior for Ē3 (without crowding effect case)

For Ē3, the system (2.1) is verified by not considering crowding. That means the system
was only studied with the toxicant. It has been observed that all the prey and predator
populations increased in values when we compared them with Ē3 values (see Table 2),
and Ē3 is stable. So the prey predators are shown in Figure 6, and the populations’ values
i.e., Ē3(9.3347, 0.4998, 3.9067) (see table 1)(without crowding case).

For Ē3, the system (2.1) is verified by not considering crowding and toxicant. That
means, the system (2.1) with C1 = C3 = C7 = C10 = 0. It has been observed that
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the system (2.1) would be unstable and not exist. The system survives when either the
toxicant effect is present, or the crowding effect is present in the system.

Table 2. x, y, z values at different equilibrium points
Equilibrium Points Values

of x
Values
of y

Values
of z

Ë1(ẍ, 0, 0) 1.0000 0.0000 0.0000

Ẽ2(x̃, ỹ, 0) 2.3638 1.5567 0.0000
Ē3(x̄, ȳ, z̄) 1.9337 1.1770 0.6454
Ē3(x̄, ȳ, z̄) (without toxicant) 3.7115 1.8329 1.2690
Ē3(x̄, ȳ, z̄) (without crowding) 9.3347 0.4998 3.9067
Ē3(x̄, ȳ, z̄) (without toxicant and crowding) unstable

5. Conclusion

Considered a food chain mathematical which is based on the assumptions in the model,
formulated with the effect of crowding and toxicant (see the system (2.1)). The considered

prey-predator mathematical model has four equilibriums, they are Ê0(0, 0, 0), Ë1(ẍ, 0, 0),

Ẽ2(x̃, ỹ, 0) and Ē3(x̄, ȳ, z̄). The survival of all the points was found, and the stability

analysis was performed. The Ê0(0, 0, 0) equilibrium was unstable, other points Ë1(ẍ, 0, 0),

Ẽ2(x̃, ỹ, 0) and Ē3(x̄, ȳ, z̄) were locally asymptotically stable under some analytical con-
ditions. We have used Matlab software for numerical simulations. All the figures show
the stability in nature. With the help of parameter values, all the analytical results have
been verified. The system shows stable cases in the absence of toxicant and crowding
separately, but in the combined absence of toxicant and crowding, the system does not
exist (unstable) (see Table 2). It has been observed that the system would survive when
either the toxicant effect or the crowding effect is present in the system (see Figures 4
and 5).
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