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1. Introduction

Fractional differential equations have been applied recently in several fields, such as
engineering, economics, mechanics, chemistry, physics, viscoelasticity, finance, aerody-
namics, electrodynamics of complex medium, control of dynamical systems [4,

’ ’ ’ ]

Several works have been done concerning the existence and uniqueness results for
fractional integrodifferential equations. Here we mention some of the works [1, 11, 23, 25,

]. Recently, several researchers are interested in exploring different aspects of fractional
differential equations such as existence and uniqueness of solutions, stability of solutions,
for more detail (see [2, 5, 6, 10, 13, 17, 18, 20, 24]).

The 1-Caputo fractional derivative offers a significant generalization beyond traditional
Caputo and Riemann-Liouville operators. The inclusion of the ¢ function facilitates
a flexible memory kernel, allowing for the modeling of complex, time-varying memory
effects that standard approaches do not capture. In contrast, classical studies that utilize
constant memory kernels are limited to systems exhibiting uniform memory behavior. By
employing the 1-Caputo derivative, the theoretical framework is expanded, enhancing its
practicality for real-world applications. Furthermore, the existence and uniqueness results
obtained through fixed-point theorems apply to fractional derivatives with non-singular
kernels, thereby improving the model’s robustness and stability in simulations.
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Almeida in [3] investigated the existence and uniqueness results for fractional functional
differential equations involving -Caputo fractional derivative.

°DYYa(t) = f (t,xy), teJ=lab],
x(t) = P(t), t€la—ea,

where CDgf/) is the 1-Caputo fractional derivative of order 0 < a < 1.

Several researchers have conducted in-depth studies on the -Caputo derivative and
its significance in the stability analysis of fractional differential equations [8, 9, 12, 28].
These investigations focus on how the ¥-Caputo derivative generalizes traditional frac-
tional derivatives, allowing for the modeling of dynamic systems with time-varying mem-
ory effects. By applying fixed-point theorems, these studies ensure the existence and
uniqueness of solutions, enhancing the applicability of fractional differential equations in
various fields.

So far, to the best of our knowledge, the fractional integrodifferential equations involv-
ing ¢-Caputo fractional derivative have not been discussed in the literature.

Motivated by the above work, in this paper, we consider the -Caputo fractional
integrodifferential equation:

CDs;wx(t) =f (t,wt,/o g(t,s,xs)ds> , teJ=]a,b], (1.1)
x(t) = ¢(t), t€la—ea, (1.2)

where CD:;w is the 9-Caputo fractional derivative of order 0 < a < 1 and € > 0. Let
f:IxC(-¢,0,R) xR—=>R, g:JxJxC([-€¢0],R) > Rand ¢: [a —€,a] = R be
continuous functions, * € C([a — €,b],R) and ¢ € C([a — ¢,b],R) such that ¢'(t) > 0,
Yt € [a — €, b]. Here x4 is defined by x4(0) = x(t + 6).

The study of the fractional boundary value problem (1.1)—(1.2) is crucial due to its
ability to model real-world phenomena with memory effects and nonlocal behavior. Uti-
lizing the 1-Caputo derivative, the problem generalizes classical models by introducing a
flexible memory kernel that adjusts to time-varying effects, making it applicable to sys-
tems like population dynamics and heat transfer. In comparison to existing results using
Caputo or Riemann-Liouville derivatives, our work broadens the scope by including these
operators as special cases. The inclusion of Krasnoselskii’s fixed-point theorem and the
Banach contraction principle enhances the mathematical foundation, while the flexibility
of the y-Caputo derivative allows for more accurate modeling of complex systems.

In ecology and population dynamics, ¥-Caputo fractional integrodifferential equations
can model species interactions where past population levels influence current growth rates.
This is particularly relevant for species that exhibit delayed responses to environmental
changes or resource availability. The key contributions of our paper are as follows:

e Existence and uniqueness: the paper establishes existence and uniqueness re-
sults for 1-Caputo fractional integrodifferential equations with finite delay.

e Use of fixed-point theorems: it employs standard fixed-point theorems to vali-
date the solutions obtained rigorously.

e Generalization of fractional derivatives: the study generalizes classical results
by utilizing the ¢-Caputo derivative, accommodating time-dependent memory
effects.
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e Illustrative example: an example is provided to demonstrate the theoretical
findings, enhancing the understanding of the proposed methods.

The rest of the paper is organized as follows. In section 2, we present some notations,
basic definitions, and preliminary details that will be used throughout this paper. In
section 3, we obtain the existence and uniqueness results of the solutions of the considered
problem (1.1)—(1.2) by using Banach fixed-point theorem and Leray-Schauder alternative
theorem.

2. Preliminaries

In this part, we provide notations, definitions, and introductory information that will
be used throughout the rest of this work.

Definition 2.1 ([16], ¥-Riemann-Liouville fractional integral). Let o > 0, = be an in-
tegrable function defined on J and ¥ € C'(J,R) be a positive and increasing function,
such that ¢'(t) # 0 for all t € J. The ¢-Riemann-Liouville fractional integral operator of
order « of a function z is given by

12950 = s [ @0 v a(rar
where I'(+) is a gamma function.

Definition 2.2 ([16], ¢-Riemann-Liouville fractional derivative). Let n — 1 < a < n,
x be an integrable function defined on J and ¢ € C1(J,R) be a positive and increasing
function, such that ¢’(t) # 0 for all ¢ € J. The y-Riemann-Liouville fractional derivative
of order « of a function z is given by

a1 1 i " n—a, _
at .fL'(t) [wl(t) dt:| Ia+ l‘(t)7 n= [Oé] + 17

where [a] represents the integer part of the real number a.

Definition 2.3 ([16], ¢-Caputo fractional derivative). Let n — 1 < o« < n and z,¢ €
C™(J,R) be two functions, such that ¢ is increasing and positive with ¢’(¢) # 0 for all
t € J. The y-Caputo fractional derivative of x of order « is given by

OV a(t) = 17Vl (1)
— # ! ’ - _ T n—a—lx[n] dr
-t [ WO - vy war

where xzﬂ (t) = [w’l(t):lﬂ na:(t) on J.

We remark when « = m € N,

DY a(t) = 2 (8).

Theorem 2.4 ([3]). Let x : [a,b] = R be a continuous function. Then
CDOPTN () = a(t). (2.1)

Furthermore, if x € C"~1(J, R) then

)
k!

(%(t) — v(a)*. (2.2)

M ]

IC”Z’CDG+ x(t) = z(t) —

~
Il

0
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Theorem 2.5 (Banach fixed point theorem). Let (X,d) be a complete metric space. If
F: X — X is a contraction, then F' admits a unique fixed point.

Theorem 2.6 (Leray-Schauder alternative). Let E be a Banach space, C a closed convex
subset of E and U be an open subset of C with 0 € U. If F : U — C is a continuous
function and if F(U) is contained in a compact set, then either

i) F has a fived point in U, or
it) there exists ¢ € OU and 0 < X < 1 such that x = A\F(z).

We consider the following norms

[z]l; = suplz(t)] and [|lz[l—co) = sup | (6)]-
teJ 0c[—e,0]

3. Existence and Uniqueness Results

We assume the following hypotheses:
(H1) There exists a constant Ly > 0 such that

|f(t,z1,y1) — f(t, 22, y2)| < Ly (|21 — @2ll[—co) + 1 — ¥2l)
for all z1, 22 € C([—€,0],R), y1,y2 € R and ¢ € J.
(H2) There exists a constant Ly > 0 such that

lg(t,s,21) — g(t, s,22)| < Ly (|21 — 22ll[—e,07) »
for all x1, 22 € C([—¢,0],R).
(H3) There exists a continuous function p; € C(J,R") and nondecreasing function
q1 € C(RJ,RY) such that
£t 29)] < 1O (e + ).
for all x € C([—¢€,0],R),y e Rand t € J.
(H4) There exists a continuous function pe € C(J,R") and nondecreasing function
q2 € C(R§,RY) such that
lg(t,s,2)| < pa(s)az ([l —c.1) -
for all z € C([—¢,0],R) and ¢, s € J.

Theorem 3.1. The function z € C([a—¢€,b],R) is a solution of the problem (1.1) — (1.2)
if and only if x satisfies the following equation:

o(t), if t€la—eal,

=) = d(a) + (1a) / V(1)) = (1) dr if tE o

r
where for = f (T, ﬂcﬁ/ g(7,0, x(,)da).
0

Proof. Suppose that x is a solution of the problem (1.1) — (1.2). Both sides apply I;ﬁw

in the equation (1.1), and considering the equation (2.2), we obtain the equation (3.1).
Conversely, given ¢t € J, applying CDZYJ:Z’ both sides in the equation (3.1) and by using

the equation (2.1), we get the equation (1.1). L]
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Theorem 3.2. Assume that the hypotheses (H1) and (H2) are satisfied. If £ < 1,

e [W0) (@)
INa+1)

problem (1.1) — (1.2).

} (L1(1 4 La)) < 1, then there exists a unique solution to the

Proof. We define the set U = {z € C([a —¢,b],R) : CDZ‘f’x is continuous on J} and
F : U — U the operator

if tea—eal,

¢(t)7
POZ o0+ s [ OO 66D ot it te

where fy » = f | T, xT7/ g(7,0,2,)do ). Let us see that the function F is well defined.

0
Given = € U, the map t — F(z)(t) is continuous, for all ¢ € [a — €,b]. Also, for all t € J,
CDZ‘f’F(x)(t) exists and is continuous.
We prove that F is a contraction. Let z,y € U and t € [a — €,a]. Then, |F(x)(t) —
F(y)(t)] = 0. On the other hand, for ¢t € J, we get,

|F(z)(t) = F(y)

(o)
1 t / a—1 _
< / G — B far — Fyrldr

IN

a7 [ YO0 = o) (L (14 L) o = v lcordr

(L1 (14 Ly)) [W} s = Yrllja—c.p)-

IN

Therefore,

(¥ (b) — ¢(a))*

F(a ¥+ 1) :l ||Jf - y”[afe,b]'

I1P@) = Flla-cr < (211 + 1) |

Thus, F is a contraction mapping. Hence, F' admits a unique fixed point by the Banach
fixed-point theorem. [

Theorem 3.3. Assume that the hypotheses (H3) and (H/) are satisfied. If M € R is a
positive constant with

Ipals (M + lpalls 2(A0)) (0(5) — ¥(@)° + Ta+ Do)
MT(a+1)
M > sup |o(t), (3.2)

tela—e,al

<1 and

then the problem (1.1) — (1.2) has at least one solution in [a — €, b).

Proof. The proof will be divided into four steps:
Step 1: F' is continuous.
Let (z,,) be a sequence in C([a — ¢, b], R) whose limit is x € C([a—¢,b],R). Then, V¢ € J,
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we get
|F(z,)(t) — F(x)(t

< L / BT — ()7 a1

< / G (P = B SUp far — fas)r
teJ

(¢ (b) — ¢(a))”
< sup fxn f:z: T Tlat+1l
teJ | l Fla+1)
where f, » = f <T, $T,/ g(t,0, mg)da). Since f is continuous function, the last term
0
converges to zero as n — 00.

Step 2: F is uniformly bounded. B
Let Br = {z € U : [|z[/jq—c,p) < R}, where R > 0 is a real number. Given x € Br and
teJ

|F(x)(0)]
1 a-1
- @/ ()W) — () (@)l
1 t , a—1
<t / ¥ (7)) — $(r))
<p1(7)q1 (“xH[a—@b] +p2(7)92(||x||[a—67”1))> dr+ M
< =D (ol aa (R + el o)) + 0,

which does not depend on . On the other hand, the case when ¢t € [a — €,a] is clear.
Thus, F maps bounded sets into bounded sets of C([a — ¢, b], R).

Step 3: F maps bounded sets into equicontinuous sets. Let us prove that F(Bg) is
equicontinuous. We consider t1,ts € J, with t; > t5, and = € Bg. Then,

|F(2)(t1) = F(z)(t2)]

1 a—1
s [ ) - v e

1 f2 / a—1
T / W () (W(t2) — () furdr

< ﬁ /21//(7) [(w(tl) — (1)1 = (Y(t2) —w(T))a—l}fm,TdT
| [ EO0) v s
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i

(pl(T)Ch (H'T”[a—e,b] + pQ(T)QQHx”[a—e,b])> dr

“a ),

(pl (T)a <||$H la—ep) T P2(7)g2||z| [ae,b])) dr

Sl

(lealls ar (U la—cor + Ip2lls a2 (lelliacn)) )dr

“ ],

(o5 @1 (heliaesy + Ip2lls- a2 (l2la—cir)) )m

<||p1||J a1 (R + llp2lls QQ(R))) . .
< Y [10(t) = (@) = ((t) = (@)
= ($(02) = V(t2))* + (1) = 6(t2))° ]
which converges to zero as to — t1. Let us observe that for ¢1,t2 € [a — €, a],
|[F(2)(t1) — F(z)(t2)| = |o(t1) — ¢(t2)| = 0 as t2 =1
and for t; € J and t2 € [a — €, 4],

V@) [@) =) = Wit) — ()|

()W) - w(r)*7|

V)| @) = ()~ (k) — ()|

() [@lt) = v(r)* |

|F () (t1) — F(z)(t2)| =

1 " ! a—1 .
m/a P (T)(¢(t1) — 1/)(7')) fxﬂ_dq' + ¢(a) ¢(t2) ’

also converges to zero as to — t1(— a). In the result of steps 1 to 3 together with
Arzela-Ascoli theorem, we can conclude F(Bg) is contained in a compact set.

Step 4: Let By = {@ € U : ||@||[4—c 5y < M}. Let us see that the function F : Byy — By
is well defined. Let z € Bys. For t € [a — €, a], |F(z)(t)] = |¢(t)| < M and for t € J,

o1l @ (M+ P2l (J2(M))
Ia+1)

|F(z)(8)] < [ + |¢(a)|1 <M,

under assumption (3.2).

To end of the proof, we will see that the condition (ii) in Theorem 2.6 cannot be satisfied.
Given x € By and t € [a — €,b], we get |F(x)(t)] < M. If the function x € 9B and
0 < A < 1is a real number such that x = AF(x), then we get

M = ||2l[fa—ep) = M F(@)[lja—cp) < M.

which is a contradiction. Hence by the Leray-Schauder alternative theorem, we deduce
that F' has a fixed point in Br which is a solution to the problem (1.1) — (1.2). Hence
the proof. [



Existence and Stability Results for ¢-Caputo Fractional Integrodifferential Equations with Delay 113

4. Stability

Definition 4.1. The problem (1.1)-(1.2) exhibits Ulam-Hyers stability (UHS) if there
exists a real number A > 0 with the following property: for every £ > 0, T € C([a—¢, b], R)

satisfying
t
Cng:/)j(t) - f (t,l’t,/ g(ta S7m8)d8>
0

[Z(t) — o) <&, t€la—ead. (4.2)

<¢ ted (4.1)

There exists a unique solution x € C([a — €,b],R) of (1.1)-(1.2) with
[7 — =[] < AS.

Definition 4.2. The equation (1.1)-(1.2) is considered generalized Ulam-Hyers stable
(GHUS) if there exists oy € C(RT,R"), o7(0) = 0 such that for each solution 7 € C([a —
€, b], R) satisfying the inequality (4.1)-(4.2) with there exists a solution = € C([a —¢, b], R)
of (1.1)-(1.2) with

[7 =2 < o5 ().

Theorem 4.3. Suppose that the conditions (H1)-(H2) and £ < 1 are satisfied. Then
the problem (1.1)-(1.2) is UHS.

Proof. For £ > 0, T € C([a — ¢,b],R) be any solution of the inequality (4.1)-(4.2), then
there exists h € C'(J,R) such that |h(t)| < &, t € J and satisfying

¢
“DMVE(t) = f (t,xt,/ g(t,s,xs)d8> +h(t), teJ, (4.3)
0

Z(t) = (1), t€la—eal (4.4)

The problem (4.3)-(4.4) has a solution given by

o(t), ift ela—eal,
j(t) = a,) = ! - o, .
Pla) + 157 f t,mt,/ g(t,s,Ts)ds | dr + I71h(t) ift € J.
0

Therefore, for any t € J, we get

[z(t) —2(t)| < L/ V()W) = () = forldr

T(a)
< ps [ OO v (4 L)~ el ot
! W
< (L1(1 + Lz)) lrf(f;))a] 127 = Yrllja—e,t
L vt e

MNa+1)
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Therefore

”E - x”[afe,b]

(L2010 + L)) lW}(b)—M] = Yl ey + L) 9@ €

IN

Ia+1) Ia+1)

¢ (W) —v(a)*
T'(a+1) < )\f,

IN

T'(a+1)

(1(b) —p(a))*
MNa+1)
(1(b) — P(a))”
1—(L1(1+L2)> Tt
(1.1)-(1.2) is Ulam-Hyers stable. L]

where \ = } . We conclude that the solution to equation

Theorem 4.4. Let the hypotheses of Theorem 4.5 hold. If there exists ¢y € C(RT,RT)
with ¢7(0) = 0, then the problem (1.1)-(1.2) has GHUS.

Proof. In a manner to above Theorem 4.3 with putting ¢,(§) = A and ¢;(0) = 0, we
obtain

17 = @[ {a—e,5) <&7(8)-
Hence the solution of the problem (1.1)-(1.2) has GHUS. L]

5. Example
In this section, to provide evidence for our findings, we examine a single example.

Example 5.1. Consider the problem

T
Dy E(t) = % + 25t g/0 (t —s)zods, t=1[0,1]=J, (5.1)

where
1 ¢ 11
a=g3, Pty =2 f <t7xt,/0 g(t,s,xs)ds) = % + ) + g/0 (t — s)xsds.
Clearly, f is continuous. For any x;,z} € C([—¢,0],R) for i = 1,2, and ¢t € J, we have
* * 1 * *
|f(t7x1vx2) - f(t,l‘1,£2)| < §(|x1 - l‘1| + ‘1‘2 - Z‘2|),

* 1 *
‘g(tvsa‘rl) —g(t,s,x1)| < 5(|l‘1 - l'1|)

It is clear that the condition (H1)-(H2) are satisfied with L; = §, Ly = £ and b=1. By
simple calculation, we obtain

[W} (L1(1 +L2)) <0.73 < 1.
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Therefore, by Theorem 3.2, the problem (5.1) — (5.2) has a unique solution on J. It
follows from the Theorem 4.3 that the problem (5.1) — (5.2) is UHS on J.

Consider the following problem defined on the interval J = [0, 1]:

CDE () = 2+ % + %/0 (t— s)rods, te0,1], (5.3)
() = 6(8), te-2,0] (5.4)

Set av = % and define (t) = 2*. The function f can be expressed as

‘ a1 1 [t
f(t,xt,/o g(t,s,o:s)ds) = EJr%Jrg/o (t — s)xs ds.

The function f is continuous with respect to its variables, which is essential for applying
fixed point theorems.

For z1, x5 € C(]—¢, 0], R), we establish the Lipschitz conditions as follows:

% 1 * *
|f(t,3)1,.732) - f(t,I1,$2)| < 5 (‘.731 _'T1| + |$2 _x2|)7

1
l9(t,5.21) = glt,5,07)] < £ hos — i)

Thus, the Lipschitz conditions (H1) and (H2) are satisfied with L; = § and Ly = £. To
confirm the existence of a unique solution, we check the following inequality:

[pall @ (M + [Ipa |l g2(M)) ($(b) = ¢(a))* +T'(a +1)[4(a)l
MT(a+1)

We assign values to the parameters as follows:
Ipills =1, aa=1, M=2|pfls=1, g¢(M)=1

Given o = %, we have I(a + 1) = I'(3) = @ Let (0) = 1 and ¥(1) = 2, so
¥(b) — 1(a) = 1. Substituting into the inequality, we get

1.1-(2+1~1).1+g-|¢(0)\<1.

<1.

Assuming |¢(0)| = 1, we have

3+§<1.

Therefore, the Lipschitz conditions (H3) and (H4) are satisfied. Thus, the inequality
holds under specific parameter conditions, confirming the existence and uniqueness of the
solution for the problem defined in (5.3) and (5.4).
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