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Abstract By establishing a new norm equivalence on Herz spaces using the Muckenhoupt class, the
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1. Introduction

The goal of this note is twofold. One is to obtain an equivalent norm to the (homoge-
neous) Herz norm ∥·∥K̇α,q

p
by means of weights for the parameters 1 < p < ∞, 0 < q ≤ ∞,

and α ∈ R and the other is to obtain the boundedness of the Carleson operator as an
application of this norm equivalence.

For each k ∈ Z, we set Ck ≡ [−2k, 2k]n \ [−2k−1, 2k−1]n and denote by χk its indicator
function. Then the homogeneous Herz norm ∥ · ∥K̇α,q

p
is given by

∥f∥K̇α,q
p

≡

 ∞∑
j=−∞

(2jα∥fχj∥Lp)q

 1
q

for a measurable function f . The homogeneous Herz space K̇α,q
p (Rn) is the set of all

measurable functions f for which ∥f∥K̇α,q
p

is finite.

By a weight we mean a non-negative measurable function which is almost everywhere
positive and finite. For a weight w and 1 < p < ∞, we define the weighted Lp-norm

by ∥f∥Lp(w) ≡ ∥w
1
p f∥Lp for a measurable function f . We seek to establish the following

norm equivalence to obtain the boundedness of the Carleson operator:
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Theorem 1.1. Let 1 < p < ∞, 0 < q ≤ ∞, and α ∈ R. Suppose that we have parameters
κ1, κ2 ∈ R satisfying

κ1

p
< α <

κ2

p
. (1.1)

Define

w(x) ≡ min(|x|κ1 , |x|κ2) (1.2)

for x ∈ Rn and set

wl ≡ w(2−l·) (l ∈ Z). (1.3)

Then we have an equivalence of norms:

∥f∥K̇α,q
p

∼

( ∞∑
l=−∞

(2lα∥f∥Lp(wl))
q

) 1
q

for a measurable function f : Rn → C, where the implicit constants in ∼ are independent
of f .

As an application, we will establish the boundedness of maximally modulated singular
integrals. To this end, we take a smooth function m ∈ C∞(Rn \ {0}), called the Fourier
multiplier, satisfying

|∂αm(ξ)| ≲ |ξ|−|α| (ξ ∈ Rn \ {0}) (1.4)

for all multiindices α. We define the maximally modulated singular integral operator Cm
with the Fourier multiplier m by

Cmf(x) ≡ sup
ξ∈Rn

|F−1[m(· − ξ)Ff ](x)| (x ∈ Rn)

for f ∈ L2(Rn). It is known that Cm, initially defined for functions in L2(Rn) and satisfies
|Cmf −Cmg| ≤ Cm[f − g] for any f, g ∈ L2(Rn), extends to a bounded sublinear operator
on Lp(Rn) for all 1 < p < ∞. See [7, Theorem 1.1]. Denote by p′ its conjugate exponent
for 1 < p < ∞. Bearing in mind that L∞

c (Rn), the linear space of all essentially bounded

functions with compact support, is dense in K̇α,q
p (Rn), we will prove the following theorem:

Theorem 1.2. Suppose that m ∈ C∞(Rn \ {0}) satisfies (1.4). Then the maximally

modulated singular integral operator Cm extends to a bounded linear operator on K̇α,q
p (Rn)

for all 1 < p < ∞, 0 < q ≤ ∞, and all α ∈ R with −n
p < α < n

p′ .

Remark that the special case where n = 1 and m = χ(0,∞) − χ(−∞,0) covers the
Carleson operator C = Cχ(0,∞)−χ(−∞,0)

, which plays the central role of proving the almost

everywhere convergence of the L2-Fourier series and the L2-Fourier transform. As a result,
we have the following conclusion:

Theorem 1.3. The Carleson operator C is bounded on K̇α,q
p (R) for all 1 < p < ∞,

0 < q ≤ ∞, and all α ∈ R with − 1
p < α < 1

p′ .

As a generalization, we can replace Cm by higher order commutators given by

Cm,b,kf(x) ≡ sup
ξ∈Rn

|F−1[m(· − ξ)F [(b(x)− b(·))kf ]](x)| (x ∈ Rn),

where b ∈ BMO(Rn) and k ∈ N. If we reexamine the proof of Theorem 1.2 using [9, p.
543, C], we see that we can replace Cm by Cm,b,k. We do not pursue this direction.
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We have an analogy to nonhomogeneous Herz spaces. Let 1 < p < ∞, 0 < q ≤ ∞, and
α ∈ R. Then the nonhomogeneous Herz norm ∥ · ∥Kα,q

p
is given by

∥f∥Kα,q
p

≡ ∥fχ[−1,1]n∥Lp +

 ∞∑
j=1

(2jα∥fχj∥Lp)q

 1
q

for a measurable function f . The nonhomogeneous Herz space Kα,q
p (Rn) is the set of all

measurable functions f for which ∥f∥Kα,q
p

is finite.

Since the proof goes parallelly to K̇α,q
p (Rn), we do not formulate or prove counterparts

to Theorems 1.1–1.3 except the statement of a counterpart of nonhomogeneous Herz
spaces to Theorem 1.1.

Theorem 1.4. Let 1 < p < ∞, 0 < q ≤ ∞, and α ∈ R. Suppose that we have parameters
κ1, κ2, κ3 ∈ R satisfying (1.1) and κ3

p < α. Define w and wl, l ∈ N by (1.2) and (1.3),

respectively. We define

v(x) ≡ min(1, |x|κ3) (x ∈ Rn). (1.5)

Then we have an equivalence of norms:

∥f∥K̇α,q
p

∼ ∥f∥Lp(v) +

( ∞∑
l=1

(2lα∥f∥Lp(wl))
q

) 1
q

for a measurable function f : Rn → C, where the implicit constants in ∼ are independent
of f .

Remark that the technique employed in the present paper is applicable to many oper-
ators such as singular integral operators, commutators generated by BMO and singular
integral operators as well as the fractional integral operator Iβ , where Iβ is an operator
defined for suitable functions f by

Iβf(x) ≡
∫
Rn

f(y)

|x− y|n−β
dy (x ∈ Rn).

We can reprove the following theorem by Li and Yang [4]:

Theorem 1.5. Let 0 < β < n, 1 < p1 < p2 < ∞, 0 < q ≤ ∞ satisfy

− n

p2
< α <

n

p′1
,

1

p2
=

1

p1
− β

n
. (1.6)

Then Iβ maps K̇α,q
p1

(Rn) to K̇α,q
p2

(Rn).

See [5] for more about the recent approach on Herz spaces. The technique of proving
Theorem 1.2 promises more applications to inequalities there as well as other operators in
the existing literature. For example, we can deal with multilinear commutators of singular
integrals based on the sharp maximal inequality obtained in [3]. As for the multilinear
commutators of fractional integral operators, we can use the estimate in [1]. Further
details are omitted.

We use the following standard notation for inequalities: Let A,B ≥ 0. Then A ≲ B
and B ≳ A mean that there exists a constant C > 0 such that A ≤ CB, where C depends
only on the parameters of importance. The symbol A ∼ B means that A ≲ B and B ≲ A
happen simultaneously.
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The remaining part of this paper is organized as follows: Section 2 proves Theorem 1.1.
Section 3 proves Theorem 1.2. We end this paper with proving Theorem 1.5 in Section 4.

2. Proof of Theorem 1.1

We suppose q < ∞ for the sake of simplicity; otherwise the proof below can be modified
readily. Let f : Rn → C be a measurable function. Then the one-sided estimate

∥f∥K̇α,q
p

≲

( ∞∑
l=−∞

(2lα∥f∥Lp(wl))
q

) 1
q

is easy to show, since

χl ≲ wl. (2.1)

For the converse estimate, we use

∥f∥Lp(wl) ≲
∞∑

j=−∞
min(2

κ1
p (l−j), 2

κ2
p (l−j))∥fχj∥Lp

with the assumption 1 < p < ∞ in mind. Let ε ≡ min
(
α− κ1

p , κ2

p − α
)
> 0. If we use

the boundedness of the discrete Hardy operator which guarantees

∞∑
l=−∞

 ∞∑
j=−∞

2−ε|l−j||aj |

q

≲
∞∑

l=−∞

|al|q

for all {aj}∞j=−∞ ∈ ℓq (see [8, Proposition 1.2] for example), then we obtain the reverse
inequality.

3. Proof of Theorem 1.2

We use the notion of the Muckenhoupt class Ap. By a “cube” we mean a compact
cube whose edges are parallel to the coordinate axes. We denote by Q the set of all
cubes. Let E be a measurable set and f be a measurable function with respect to the

Lebesgue measure. Then write mE(f) ≡ 1

|E|

∫
E

f(x)dx. Let 1 < p < ∞. A locally

integrable weight w is said to be an Ap-weight, if 0 < w < ∞ almost everywhere, and

Ap(w) ≡ sup
Q∈Q

mQ(w)mQ(w
− 1

p−1 )p−1 < ∞. The Muckenhoupt class Ap collects all locally

integrable weights w for which Ap(w) < ∞. It is known that | · |κ ∈ Ap if and only if
−n < κ < n(p− 1) [2, 8].

We prove the following lemma:

Lemma 3.1. Let 1 < p < ∞. Suppose that

−n < κ1 < κ2 < n(p− 1),−n < κ3 < 0.

Then the weights w and v, given by (1.2) and (1.5), respectively, belong to Ap.

Proof. Since

−n < − κ2

p− 1
< − κ1

p− 1
<

n

p− 1
= n(p′ − 1),



An equivalent norm of Herz spaces and its application to the Carleson operator 5

we see that | · |−
κ1
p−1 , | · |−

κ2
p−1 ∈ Ap′ . Thus, | · |−

κ1
p−1 + | · |−

κ2
p−1 ∈ Ap′ . Hence w− 1

p−1 ∈ Ap′ ,
or equivalently, w ∈ Ap.

If we consider the special case of κ2 = 0 in the above, then we see that v ∈ Ap.

We prove Theorem 1.2. Choose κ1, κ2 so that

−n < κ1 < pα < κ2 < n(p− 1).

It suffices to show that Cm is bounded on Lp(w) together with the estimate

∥Cmf∥Lp(w) ≲ ∥f∥Lp(w), (3.1)

where the implicit constant in ≲ depends only on the Ap-constant of w. In fact, once this
is done, we have

∥Cmf∥K̇α,q
p

∼

( ∞∑
l=−∞

(2lα∥Cmf∥Lp(wl))
q

) 1
q

≲

( ∞∑
l=−∞

(2lα∥f∥Lp(wl))
q

) 1
q

∼ ∥f∥K̇α,q
p

for all f ∈ L∞
c (Rn). Here wl is the weight given by (1.2) and (1.3). We note that

Ap(wl) = Ap(w0) for all l ∈ Z. Therefore, matters are reduced to the proof of (3.1).
However, since Cm is proved to be bounded on Lp(Rn) for all 1 < p < ∞ in [7, Theorem

1.1], (3.1) can be proved by using the sharp maximal operator in the same manner as [2,
Theorem 6.3.3]. Therefore, the proof of Theorem 1.2 is complete.

4. Proof of Theorem 1.5

We invoke the following fact from [6]:

Lemma 4.1. Let 0 < β < n, 1 < p1 < p2 < ∞ satisfy 1
p2

= 1
p1

− β
n . Let w be a weight

such that

w−p′
1 ∈ A

1+
p′1
p2

. (4.1)

Then Iβ maps boundedly from Lp1(wp1) to Lp2(wp2).

With Lemma 4.1 in mind, we prove Theorem 1.5. We can choose κ1, κ2 so that

−n < κ1 < p1α < κ2 < n(p1 − 1)

and that

−n < − κ2

p1 − 1
< − κ1

p1 − 1
< n

p′1
p2

.

Then w, defined by (1.2), satisfies (4.1). Thus, using (1.3) and (2.1), we obtain

∥Iβf∥K̇α,q
p2

≲

 ∞∑
l=−∞

2lα∥Iβf∥
Lp2

(
w

p2
p1
l

)


q
1
q

≲

( ∞∑
l=−∞

(2lα∥f∥Lp1 (wl))
q

) 1
q

∼ ∥f∥K̇α,q
p1

,

proving Theorem 1.5.
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