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Abstract Various inequalities of the Hilbert integral type have been established in the literature using

different methods. Among them, the classical Hilbert integral inequality was proved in an elegant way

by David C. Ullrich in 2013. It consists of using the method of switching to polar coordinates after some

thorough integral manipulations. Despite its effectiveness, this method seems to have been understudied

for more of the topic. In this paper, we rehabilitate it somewhat and show how it can be used to prove

new general inequalities of the Hilbert integral type, including some with multiple tuning parameters.

Particular examples of interest are also discussed.
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1. Introduction

Integral inequalities are fundamental to several branches of mathematics. They have
a wide range of applications, providing essential tools for estimating integrals, study-
ing functional spaces, and analyzing the behavior of solutions to differential equations.
Among the list of well-known integral inequalities is the Hilbert integral inequality. It is
expressed as follows: Given two square-integrable functions f : [0,+∞) → [0,+∞) and
g : [0,+∞) → [0,+∞), we have∫ +∞

0

∫ +∞

0

f(x)g(y)

x+ y
dxdy ≤ π

√∫ +∞

0

f2(x)dx

√∫ +∞

0

g2(x)dx. (1.1)

The constant π cannot be improved; it is the best. We refer to [8]. This result has
inspired several extensions and generalizations, and still attracts attention. We refer to
the studies in [2–5, 11–18, 20]. We also credit the full survey by Qiang Chen and Bicheng
Yang published in 2015 in [6] and the references therein. The existing results relevant to
the purpose of this paper are presented below.
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• A result established by Bicheng Yang in 1998 in [14, Equation (4)] can be expressed
as follows: Given β > 0, ϵ ∈ (0, 1] and two square-integrable functions f : [0, β] →
[0,+∞) and g : [0, β] → [0,+∞), we have∫ β

0

∫ β

0

f(x)g(y)

(x+ y)ϵ
dxdy

≤ B
( ϵ
2
,
ϵ

2

)√∫ β

0

κβ,ϵ(x)x1−ϵf2(x)dx

√∫ β

0

κβ,ϵ(x)x1−ϵg2(x)dx, (1.2)

where

κβ,ϵ(x) = 1− 1

2

(
x

β

)ϵ/2

and B(x, y) denotes the standard beta function defined by B(x, y) =
∫ 1

0
tx−1(1 −

t)y−1dt, with x > 0 and y > 0. The proof is based on a suitable decomposition of the
double integral, the Cauchy-Schwarz integral inequality and several changes of vari-
ables of the scale type. This result is interesting because the double integral is taken
over a finite domain, i.e., [0, β]2 = [0, β]× [0, β]. We see how considering this domain
affects the classical Hilbert integral inequality recalled in Equation (1.1), and also
the addition of the tuning parameter ϵ provides a new level of adaptability, making
the result modulable. In fact, the inequality in Equation (1.2) can be extended to
ϵ > 0, provided that the integrals on the right-hand side exist. In addition, letting
β → +∞, we have κβ,ϵ(x) → 1, and we get∫ +∞

0

∫ +∞

0

f(x)g(y)

(x+ y)ϵ
dxdy

≤ B
( ϵ
2
,
ϵ

2

)√∫ +∞

0

x1−ϵf2(x)dx

√∫ +∞

0

x1−ϵg2(x)dx, (1.3)

which is a well-known variant of the Hilbert integral inequality discussed in detail in
[19].

• Another important work from our point of view is that of David C. Ullrich in [10]. It
is shown how the method of switching to polar coordinates can be used quite easily
to prove the classical Hilbert integral inequality. In particular, the polar coordinates
introduce an angle variable that varies along [0, π/2], and the constant π of this
interval fully explains the constant π of the Hilbert integral inequality. Thus, thanks
to this approach, we can see how π arises naturally in such an integral setting, with
a proof that is concise and easy to understand.

Surprisingly, despite its simplicity and intuitiveness, the method of switching to polar
coordinates has, to the best of our knowledge, not been used to establish new inequalities
of the Hilbert integral type. This is a gap that this paper aims to fill. More precisely, we
use the polar transformation to prove two general inequalities of the Hilbert integral type,
which can be seen as variants of the one in Equation (1.2). The first variant considers the
integration over a triangle domain, i.e., the one that connects the two variables x and y
in the following way: x + y ≤ β, where β > 0. As far as we know, this is a new setting
in this context. The second variant does not innovate in the area of integration but in
the complexity of the integrated function. It introduces multiple power functions and a
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bivariate operator that may not be separable in x and y. We thus considerably generalize
the setting of the inequality in Equation (1.2).

The rest of the paper consists of the following sections: Section 2 focuses on our first
new Hilbert integral type inequality, with several examples and derived results. Section 3
is the analogue for our second new Hilbert integral type inequality. A conclusion is given
in Section 4.

2. Hilbert integral type inequality over a triangle domain

2.1. Main result

Our variant of Equation (1.2), characterized by the integration over a triangle domain,
is presented in the theorem below. As mentioned earlier, a key to the proof is the method
of switching to polar coordinates, inspired by the methodology in [10].

Theorem 2.1. Let ϵ ≥ 0, β > 0, and f : [0, β] → [0,+∞) and g : [0, β] → [0,+∞) be
two functions. Then we have∫ β

0

[∫ β−x

0

f(x)g(y)

(x+ y)ϵ
dy

]
dx

≤

√∫ β

0

ηβ,ϵ(x)x1−ϵf2(x)dx

√∫ β

0

ηβ,ϵ(x)x1−ϵg2(x)dx,

where

ηβ,ϵ(x) = B

(
ϵ

2
,
ϵ

2
; 1− x

β

)
(2.1)

and B(x, y; a) denotes the incomplete beta function defined by

B(x, y; a) =

∫ a

0

tx−1(1− t)y−1dt,

with x > 0, y > 0 and a ∈ [0, 1], provided that the integrals on the right-hand side of the
inequality exist.

Proof. Let us set

Iβ,ϵ =

∫ β

0

[∫ β−x

0

f(x)g(y)

(x+ y)ϵ
dy

]
dx =

∫ ∫
{(x,y)∈[0,+∞)2; x+y≤β}

f(x)g(y)

(x+ y)ϵ
dxdy.

Using the change of variables (x, y) = (r2, s2), it can be expressed as follows:

Iβ,ϵ = 4

∫ ∫
{(r,s)∈[0,+∞)2; r2+s2≤β}

rsf(r2)g(s2)

(r2 + s2)ϵ
drds.

We now apply the method of switching to polar coordinates to deal with the denominator
term r2+s2 (this term was introduced for this purpose only). Consider the polar change of
variables (r, s) = (ρ cos(θ), ρ sin(θ)), which is of Jacobian ρ, noting that r ≥ 0, s ≥ 0 and
r2+s2 ≤ β give ρ ∈ [0,

√
β] and θ ∈ [0, π/2], and using the basic formula cos2(θ)+sin2(θ) =
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1, we get

Iβ,ϵ = 4

∫ π/2

0

∫ √
β

0

ρ cos(θ)ρ sin(θ)f [ρ2 cos2(θ)]g[ρ2 sin2(θ)][
ρ2 cos2(θ) + ρ2 sin2(θ)

]ϵ ρdρdθ

= 4

∫ π/2

0

cos(θ) sin(θ)

∫ √
β

0

f [ρ2 cos2(θ)]g[ρ2 sin2(θ)]ρ3−2ϵdρdθ.

Using the Cauchy-Schwarz integral inequality with respect to ρ, we obtain

Iβ,ϵ ≤ 4

∫ π/2

0

cos(θ) sin(θ)×√∫ √
β

0

f2[ρ2 cos2(θ)]ρ3−2ϵdρ

√∫ √
β

0

g2[ρ2 sin2(θ)]ρ3−2ϵdρdθ

= 4

∫ π/2

0

cos(θ) sin(θ)×√∫ √
β

0

f2[ρ21 cos
2(θ)]ρ3−2ϵ

1 dρ1

√∫ √
β

0

g2[ρ22 sin
2(θ)]ρ3−2ϵ

2 dρ2dθ. (2.2)

Applying the changes of variables u = ρ21 cos
2(θ) with respect to ρ1, so that ρ1dρ1 =

1/[2 cos2(θ)]du, and v = ρ22 sin
2(θ) with respect to ρ2, so that ρ2dρ2 = 1/[2 sin2(θ)]dv, we

get

4

∫ π/2

0

cos(θ) sin(θ)

√∫ β cos2(θ)

0

f2(u)

[
u

cos2(θ)

]1−ϵ
1

2 cos2(θ)
du×√∫ β sin2(θ)

0

g2(v)

[
v

sin2(θ)

]1−ϵ
1

2 sin2(θ)
dvdθ

= 2

∫ π/2

0

cosϵ−1(θ) sinϵ−1(θ)×√∫ β cos2(θ)

0

u1−ϵf2(u)du

√∫ β sin2(θ)

0

v1−ϵg2(v)dvdθ. (2.3)

Using the Cauchy-Schwarz integral inequality with respect to θ, we have

2

∫ π/2

0

cosϵ−1(θ) sinϵ−1(θ)

√∫ β cos2(θ)

0

u1−ϵf2(u)du

√∫ β sin2(θ)

0

v1−ϵg2(v)dvdθ

≤ 2
√
Jβ,ϵ

√
Kβ,ϵ. (2.4)

where

Jβ,ϵ =

∫ π/2

0

cosϵ−1(θ) sinϵ−1(θ)

[∫ β cos2(θ)

0

u1−ϵf2(u)du

]
dθ

and

Kβ,ϵ =

∫ π/2

0

cosϵ−1(θ) sinϵ−1(θ)

[∫ β sin2(θ)

0

v1−ϵg2(v)dv

]
dθ.
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Let us now determine Jβ,ϵ and Kβ,ϵ one after the other. For both, we plan to use a change
in the order of integration, as described in [9, p. 307].

Starting with Jβ,ϵ, all the main functions involved are positive, so by changing the
order of integration, taking into account that cos2(θ) is decreasing for θ ∈ [0, π/2], we get

Jβ,ϵ =

∫ β

0

∫ arccos
[√

u/β
]

0

cosϵ−1(θ) sinϵ−1(θ)u1−ϵf2(u)dθ

 du
=

∫ β

0

u1−ϵf2(u)

∫ arccos
[√

u/β
]

0

cosϵ−1(θ) sinϵ−1(θ)dθ

 du.

Considering the change of variables t = sin2(θ), so that dt = 2 sin(θ) cos(θ)dθ,

sin2
{
arccos

[√
u/β

]}
= 1− u/β and cos2(θ) = 1− sin2(θ), we obtain

∫ arccos
[√

u/β
]

0

cosϵ−1(θ) sinϵ−1(θ)dθ

=
1

2

∫ sin2
{
arccos

[√
u/β

]}
0

[1− sin2(θ)]ϵ/2−1[sin2(θ)]ϵ/2−1[2 sin(θ) cos(θ)]dθ

=
1

2

∫ 1−u/β

0

(1− t)ϵ/2−1tϵ/2−1dt =
1

2
B

(
ϵ

2
,
ϵ

2
; 1− u

β

)
.

We thus find that

Jβ,ϵ =
1

2

∫ β

0

B

(
ϵ

2
,
ϵ

2
; 1− u

β

)
u1−ϵf2(u)du. (2.5)

On the other hand, for Kβ,ϵ, by changing the order of integration, taking into account

that sin2(θ) is increasing for θ ∈ [0, π/2], we get

Kβ,ϵ =

∫ β

0

[∫ π/2

arcsin
[√

v/β
] cosϵ−1(θ) sinϵ−1(θ)v1−ϵg2(v)dθ

]
dv

=

∫ β

0

[
v1−ϵg2(v)

∫ π/2

arcsin
[√

v/β
] cosϵ−1(θ) sinϵ−1(θ)dθ

]
dv.

Using the change of variables t = sin2(θ), so that dt = 2 sin(θ) cos(θ)dθ,
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sin2
{
arcsin

[√
v/β

]}
= v/β and cos2(θ) = 1 − sin2(θ), and the change of variables

w = 1− t, we have∫ π/2

arcsin
[√

v/β
] cosϵ−1(θ) sinϵ−1(θ)dθ

=
1

2

∫ 1

sin2
{
arcsin

[√
v/β

]}[1− sin2(θ)]ϵ/2−1[sin2(θ)]ϵ/2−1[2 sin(θ) cos(θ)]dθ

=
1

2

∫ 1

v/β

(1− t)ϵ/2−1tϵ/2−1dt =
1

2

∫ 1−v/β

0

wϵ/2−1(1− w)ϵ/2−1dw

=
1

2
B

(
ϵ

2
,
ϵ

2
; 1− v

β

)
.

We thus obtain

Kβ,ϵ =
1

2

∫ β

0

B

(
ϵ

2
,
ϵ

2
; 1− v

β

)
v1−ϵg2(v)dv. (2.6)

Combining Equations (2.2), (2.3), (2.4), (2.5) and (2.6), simplifying the constants 2, and
standardizing the names of the variables, i.e., “x = u” and “x = v”, we establish that

Iβ,ϵ ≤

√∫ β

0

ηβ,ϵ(x)x1−ϵf2(x)dx

√∫ β

0

ηβ,ϵ(x)x1−ϵg2(x)dx,

where

ηβ,ϵ(x) = B

(
ϵ

2
,
ϵ

2
; 1− x

β

)
.

This concludes the proof of Theorem 2.1.

Some special cases of Theorem 2.1 are now discussed. Taking ϵ = 1, we get∫ β

0

[∫ β−x

0

f(x)g(y)

x+ y
dy

]
dx ≤

√∫ β

0

ηβ,1(x)f2(x)dx

√∫ β

0

ηβ,1(x)g2(x)dx,

where

ηβ,1(x) = B

(
1

2
,
1

2
; 1− x

β

)
= 2arcsin

[√
1− x

β

]
= 2arccos

[√
x

β

]
.

This gives the following new, simpler integral inequality:∫ β

0

[∫ β−x

0

f(x)g(y)

x+ y
dy

]
dx

≤ 2

√∫ β

0

arccos

[√
x

β

]
f2(x)dx

√∫ β

0

arccos

[√
x

β

]
g2(x)dx.

It is of mathematical interest to see how the arccosine function appears in such an integral
inequality setting, which is quite rare in the field of Hilbert integral inequality types. Since
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arccos(0) = π/2, by applying β → +∞, we also find that∫ +∞

0

[∫ +∞

0

f(x)g(y)

x+ y
dy

]
dx ≤ 2

√∫ +∞

0

π

2
f2(x)dx

√∫ +∞

0

π

2
g2(x)dx

= π

√∫ +∞

0

f2(x)dx

√∫ +∞

0

g2(x)dx,

which corresponds to the classical Hilbert integral inequality as recalled in Equation (1.1).
Selecting ϵ = 2, we get∫ β

0

[∫ β−x

0

f(x)g(y)

(x+ y)2
dy

]
dx

≤

√∫ β

0

ηβ,2(x)x−1f2(x)dx

√∫ β

0

ηβ,2(x)x−1g2(x)dx,

where

ηβ,2(x) = B

(
1, 1; 1− x

β

)
= 1− x

β
.

With reference to the upper bound established in [14, Equation (4)], also recalled in
Equation (1.2), note that, for any x ∈ [0, β], we have

ηβ,2(x) ≤ κβ,2(x).

This implies that the upper bound obtained is lower than that in Equation (1.2), as
expected given the sharpness of the techniques used and the fact that∫ β

0

[∫ β−x

0

f(x)g(y)

(x+ y)2
dy

]
dx ≤

∫ β

0

∫ β

0

f(x)g(y)

(x+ y)2
dydx.

Taking ϵ = 3, we obtain∫ β

0

[∫ β−x

0

f(x)g(y)

(x+ y)3
dy

]
dx

≤

√∫ β

0

ηβ,3(x)x−2f2(x)dx

√∫ β

0

ηβ,3(x)x−2g2(x)dx,

where

ηβ,3(x) = B

(
3

2
,
3

2
; 1− x

β

)
=

1

4

{(
1− 2

x

β

)√
x

β

(
1− x

β

)
+ arccos

[√
x

β

]}
.

As a last example, selecting ϵ = 4, we get∫ β

0

[∫ β−x

0

f(x)g(y)

(x+ y)4
dy

]
dx

≤

√∫ β

0

ηβ,4(x)x−3f2(x)dx

√∫ β

0

ηβ,4(x)x−3g2(x)dx,
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where

ηβ,4(x) = B

(
2, 2; 1− x

β

)
=

1

6

(
1 + 2

x

β

)(
1− x

β

)2

.

All the above inequalities are, to the best of our knowledge, new inequalities of the
Hilbert integral type in the literature.

2.2. Secondary results

Some secondary results related to Theorem 2.1 are now presented. The proposition
below presents an integral type inequality involving only one adaptable function and still
an integration over a triangle domain.

Proposition 2.2. Let ϵ ∈ (0, 1), β > 0, and f : [0, β] → [0,+∞) be a function. Then we
have

∫ β

0

[∫ β−x

0

f(y)

(x+ y)ϵ
dy

]2

dx ≤ Aβ,ϵ

∫ β

0

ηβ,ϵ(x)x
1−ϵf2(x)dx,

where ηβ,ϵ(x) is given by Equation (2.1) and

Aβ,ϵ = sup
x∈[0,β]

[
ηβ,ϵ(x)x

1−ϵ
]
,

which exists because ηβ,ϵ(x)x
1−ϵ is a continuous function with respect to x, provided that

the integrals on the right-hand side of the inequality exist.

Proof. Let us consider the following function based on f(y):

h(x) =

∫ β−x

0

f(y)

(x+ y)ϵ
dy.

Applying the Fubini-Tonelli integral theorem, the general statement of which is recalled
in the appendix, we get

∫ β

0

[∫ β−x

0

f(y)

(x+ y)ϵ
dy

]2

dx =

∫ β

0

[∫ β−x

0

f(y)

(x+ y)ϵ
dy

]
h(x)dx

=

∫ β

0

[∫ β−x

0

h(x)f(y)

(x+ y)ϵ
dy

]
dx.

Theorem 2.1 applied with the appropriate functions, i.e., “f(x) = h(x)” and “g(y) =
f(y)”, and the fact that, for any ϵ ∈ (0, 1) and x ∈ [0, β], we have ηβ,ϵ(x)x

1−ϵ ≤ Aβ,ϵ,
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give

∫ β

0

[∫ β−x

0

h(x)f(y)

(x+ y)ϵ
dy

]
dx

≤

√∫ β

0

ηβ,ϵ(x)x1−ϵh2(x)dx

√∫ β

0

ηβ,ϵ(x)x1−ϵf2(x)dx

=

√√√√∫ β

0

ηβ,ϵ(x)x1−ϵ

[∫ β−x

0

f(y)

(x+ y)ϵ
dy

]2

dx

√∫ β

0

ηβ,ϵ(x)x1−ϵf2(x)dx

≤
√
Aβ,ϵ

√√√√∫ β

0

[∫ β−x

0

f(y)

(x+ y)ϵ
dy

]2

dx

√∫ β

0

ηβ,ϵ(x)x1−ϵf2(x)dx.

Therefore, we have

∫ β

0

[∫ β−x

0

f(y)

(x+ y)ϵ
dy

]2

dx

≤
√
Aβ,ϵ

√√√√∫ β

0

[∫ β−x

0

f(y)

(x+ y)ϵ
dy

]2

dx

√∫ β

0

ηβ,ϵ(x)x1−ϵf2(x)dx.

If we arrange the common terms on both sides and consider the square exponent, we
obtain

∫ β

0

[∫ β−x

0

f(y)

(x+ y)ϵ
dy

]2

dx ≤ Aβ,ϵ

∫ β

0

ηβ,ϵ(x)x
1−ϵf2(x)dx.

The desired result is obtained, completing the proof of Proposition 2.2.

This result is the basis for the further analysis of the specific subjacent integral operator
defined over a triangle domain. It must be considered as a first step in this direction.

In the proposition below, we propose an alternative integral inequality to the one
in Theorem 2.1, but with some different assumptions on ϵ and the underlying integral
conditions.

Proposition 2.3. Let ϵ ∈ R, β > 0, and f : [0, β] → [0,+∞) and g : [0, β] → [0,+∞) be
two functions. Then we have

∫ β

0

[∫ β−x

0

f(x)g(y)

(x+ y)ϵ
dy

]
dx

≤

√∫ β

0

ψβ,ϵ(x)x1−ϵf2(x)dx

√∫ β

0

ψβ,ϵ(x)x1−ϵg2(x)dx,
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where

ψβ,ϵ(x) =


1

1− ϵ

[(
β

x

)1−ϵ

− 1

]
if ϵ ∈ R/{1}

log

(
β

x

)
if ϵ = 1

, (2.7)

provided that the integrals on the right-hand side of the inequality exist.

Proof. Let us set Aβ = {(x, y) ∈ [0,+∞)2; x + y ≤ β}. It follows from the Cauchy-
Schwarz integral inequality applied with respect to x and y, and the Fubini-Tonelli integral
theorem that∫ β

0

[∫ β−x

0

f(x)g(y)

(x+ y)ϵ
dy

]
dx =

∫ ∫
Aβ

f(x)g(y)

(x+ y)ϵ
dydx

=

∫ ∫
Aβ

f(x)

(x+ y)ϵ/2
× g(y)

(x+ y)ϵ/2
dydx

≤

√∫ ∫
Aβ

f2(x)

(x+ y)ϵ
dydx

√∫ ∫
Aβ

g2(y)

(x+ y)ϵ
dydx

=

√√√√∫ β

0

[∫ β−x

0

1

(x+ y)ϵ
dy

]
f2(x)dx

√√√√∫ β

0

[∫ β−y

0

1

(x+ y)ϵ
dx

]
g2(y)dy.

For any ϵ ̸= 1 and x ∈ (0, β), we have∫ β−x

0

1

(x+ y)ϵ
dy =

[
1

1− ϵ
(x+ y)1−ϵ

]y=β−x

y=0

=
1

1− ϵ

(
β1−ϵ − x1−ϵ

)
= ψβ,ϵ(x)x

1−ϵ,

where ψβ,ϵ(x) is given in Equation (2.7). For the case ϵ = 1, by just editing the integrated
function, we have∫ β−x

0

1

x+ y
dy = [log(x+ y)]

y=β−x
y=0 = log

(
β

x

)
= ψβ,ϵ(x)x

1−ϵ.

Proceeding in a similar manner, for any ϵ ∈ R and y ∈ (0, β), we have∫ β−y

0

1

(x+ y)ϵ
dx = ψβ,ϵ(y)y

1−ϵ.

The combination of the above inequalities and expressions gives∫ β

0

[∫ β−x

0

f(x)g(y)

(x+ y)ϵ
dy

]
dx

≤

√∫ β

0

ψβ,ϵ(x)x1−ϵf2(x)dx

√∫ β

0

ψβ,ϵ(y)y1−ϵg2(y)dy.

Standardizing the notations x and y yields the desired result. This concludes the proof.
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In full generality, for given functions f and g, the inequalities in Theorem 2.1 and
Proposition 2.3 are difficult to compare because they deal with different assumptions
on ϵ and different underlying integral conditions on the functions involved. However,
the Hilbert integral inequality is not recovered in Proposition 2.3; this result cannot be
considered as a proper generalisation.

3. A “very general” Hilbert integral type inequality

3.1. Main result

Our variant of Equation (1.2), characterized by a high level of generality, is presented
in the theorem below. As mentioned earlier, a key to the proof is the method of switching
to polar coordinates.

Theorem 3.1. Let ϵ ≥ 0, τ ≥ 0, σ ≥ 0, f : [0,+∞) → [0,+∞) and g : [0,+∞) →
[0,+∞) be two functions, and T : [0,+∞)2 → [0,+∞) be a bivariate function satisfying
the homogeneous property of degree 0, formulated as follows: For any λ > 0, we have

T (λx, λy) = T (x, y).

Then we have∫ +∞

0

∫ +∞

0

f(x)g(y)

(x+ y)ϵ
T (x, y)xτyσdxdy

≤ Cϵ,τ,σ,[T ]

√∫ +∞

0

xτ+σ−ϵ+1f2(x)dx

√∫ +∞

0

xτ+σ−ϵ+1g2(x)dx,

where

Cϵ,τ,σ,[T ] =

∫ 1

0

(1− t)(τ−σ+ϵ)/2−1t(σ−τ+ϵ)/2−1T (1− t, t)dt,

provided that the integrals on the right-hand side of the inequality exist.

Proof. For this proof, we set

Lϵ,τ,σ,[T ] =

∫ +∞

0

∫ +∞

0

f(x)g(y)

(x+ y)ϵ
T (x, y)xτyσdxdy.

By using the change of variables (x, y) = (r2, s2), we obtain

Lϵ,τ,σ,[T ] = 4

∫ +∞

0

∫ +∞

0

f(r2)g(s2)

(r2 + s2)ϵ
T (r2, s2)r2τ+1s2σ+1drds.

We now apply the method of switching to polar coordinates to deal with the denominator
term r2 + s2 (this term was introduced for this purpose only). Consider the polar change
of variables (r, s) = (ρ cos(θ), ρ sin(θ)), which is of Jacobian ρ, and the homogeneous
property of degree 0 of T (x, y) with λ = ρ2, we get

Lϵ,τ,σ,[T ] = 4

∫ π/2

0

∫ +∞

0

f [ρ2 cos2(θ)]g[ρ2 sin2(θ)][
ρ2 cos2(θ) + ρ2 sin2(θ)

]ϵT [
ρ2 cos2(θ), ρ2 sin2(θ)

]
×

[ρ cos(θ)]2τ+1[ρ sin(θ)]2σ+1ρdρdθ

= 4

∫ π/2

0

cos2τ+1(θ) sin2σ+1(θ)T
[
cos2(θ), sin2(θ)

]
Mϵ,τ,σ(θ)dθ, (3.1)
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where

Mϵ,τ,σ(θ) =

∫ +∞

0

f [ρ2 cos2(θ)]g[ρ2 sin2(θ)]ρ2(τ+σ−ϵ)+3dρ.

Let us now bound this last integral term. Using the Cauchy-Schwarz integral inequality
with respect to ρ, we obtain

Mϵ,τ,σ(θ)

≤

√∫ +∞

0

f2[ρ2 cos2(θ)]ρ2(τ+σ−ϵ)+3dρ

√∫ +∞

0

g2[ρ2 sin2(θ)]ρ2(τ+σ−ϵ)+3dρ

=

√∫ +∞

0

f2[ρ21 cos
2(θ)]ρ

2(τ+σ−ϵ)+3
1 dρ1

√∫ +∞

0

g2[ρ22 sin
2(θ)]ρ

2(τ+σ−ϵ)+3
2 dρ2.

Applying the changes of variables u = ρ21 cos
2(θ) with respect to ρ1, so that ρ1dρ1 =

1/[2 cos2(θ)]du, and v = ρ22 sin
2(θ) with respect to ρ2, so that ρ2dρ2 = 1/[2 sin2(θ)]dv, we

get

√∫ +∞

0

f2[ρ21 cos
2(θ)]ρ

2(τ+σ−ϵ)+3
1 dρ1

√∫ +∞

0

g2[ρ22 sin
2(θ)]ρ

2(τ+σ−ϵ)+3
2 dρ2

=

√∫ +∞

0

f2(u)

[
u

cos2(θ)

]τ+σ−ϵ+1
1

2 cos2(θ)
du×√∫ +∞

0

g2(v)

[
v

sin2(θ)

]τ+σ−ϵ+1
1

2 sin2(θ)
dv

=
1

2 cosτ+σ−ϵ+2(θ) sinτ+σ−ϵ+2(θ)
×√∫ +∞

0

uτ+σ−ϵ+1f2(u)du

√∫ +∞

0

vτ+σ−ϵ+1g2(v)dv.

Hence, we have

Mϵ,τ,σ(θ) ≤
1

2 cosτ+σ−ϵ+2(θ) sinτ+σ−ϵ+2(θ)
×√∫ +∞

0

uτ+σ−ϵ+1f2(u)du

√∫ +∞

0

vτ+σ−ϵ+1g2(v)dv. (3.2)
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Therefore, combining Equations (3.1) and (3.2), isolating the integral with respect to θ
and adopting the notations as “u = x” and “v = x” for the sake of uniformization, we get

Lϵ,τ,σ,[T ] ≤ 4

∫ π/2

0

cos2τ+1(θ) sin2σ+1(θ)T
[
cos2(θ), sin2(θ)

]
×

1

2 cosτ+σ−ϵ+2(θ) sinτ+σ−ϵ+2(θ)
×√∫ +∞

0

uτ+σ−ϵ+1f2(u)du

√∫ +∞

0

vτ+σ−ϵ+1g2(v)dvdθ

= Nϵ,τ,σ,[T ]

√∫ +∞

0

xτ+σ−ϵ+1f2(x)dx

√∫ +∞

0

xτ+σ−ϵ+1g2(x)dx,

where

Nϵ,τ,σ,[T ] = 2

∫ π/2

0

cosτ−σ+ϵ−1(θ) sinσ−τ+ϵ−1(θ)T
[
cos2(θ), sin2(θ)

]
dθ.

Applying the change of variables t = sin2(θ), so that dt = 2 sin(θ) cos(θ)dθ and cos2(θ) =
1− sin2(θ), we obtain

Nϵ,τ,σ,[T ]

=

∫ π/2

0

[1− sin2(θ)](τ−σ+ϵ)/2−1[sin2(θ)](σ−τ+ϵ)/2−1T
[
1− sin2(θ), sin2(θ)

]
×

[2 sin(θ) cos(θ)]dθ

=

∫ 1

0

(1− t)(τ−σ+ϵ)/2−1t(σ−τ+ϵ)/2−1T (1− t, t)dt = Cϵ,τ,σ,[T ].

This concludes the proof of Theorem 3.1.

The generality of Theorem 3.1 is thus characterized by the presence of the tuning
parameters ϵ, τ , σ, and the operator T (x, y), which can perturb the separability in x
and y of the main integrated function. Note that the homogeneous property of degree 0
assumed for this operator includes the following functional form:

T (x, y) = k

(
x

y

)
,

where k : [0,+∞) → [0,+∞). See, for example, [1].
Some precise examples of Theorem 3.1 are described below.

Example 1. Taking T (x, y) = 1, we have∫ +∞

0

∫ +∞

0

f(x)g(y)

(x+ y)ϵ
xτyσdxdy

≤ Cϵ,τ,σ,[T ]

√∫ +∞

0

xτ+σ−ϵ+1f2(x)dx

√∫ +∞

0

xτ+σ−ϵ+1g2(x)dx,
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where

Cϵ,τ,σ,[T ] =

∫ 1

0

(1− t)(τ−σ+ϵ)/2−1t(σ−τ+ϵ)/2−1dt

= B

[
1

2
(τ − σ + ϵ) ,

1

2
(σ − τ + ϵ)

]
.

Note that the following assumptions on the parameters are required: σ − τ + ϵ > 0 and
τ − σ+ ϵ > 0. In particular, taking τ = 0 and σ = 0, which implies that ϵ > 0, we obtain∫ +∞

0

∫ +∞

0

f(x)g(y)

(x+ y)ϵ
dxdy ≤ Cϵ,0,0,[T ]

√∫ +∞

0

x1−ϵf2(x)dx

√∫ +∞

0

x1−ϵg2(x)dx,

where

Cϵ,0,0,[T ] =

∫ 1

0

(1− t)ϵ/2−1tϵ/2−1dt = B
( ϵ
2
,
ϵ

2

)
.

We thus refind a result established in [19], recalled in Equation (1.3).

Example 2. As another simple example, let us choose

T (x, y) =

√
xy

x+ y
.

Then it is clear that T (x, y) is homogeneous of degree 0, and Theorem 3.1 implies that∫ +∞

0

∫ +∞

0

f(x)g(y)

(x+ y)ϵ
×

√
xy

x+ y
xτyσdxdy

≤ Cϵ,τ,σ,[T ]

√∫ +∞

0

xτ+σ−ϵ+1f2(x)dx

√∫ +∞

0

xτ+σ−ϵ+1g2(x)dx,

where

Cϵ,τ,σ,[T ] =

∫ 1

0

(1− t)(τ−σ+ϵ)/2−1t(σ−τ+ϵ)/2−1
√
t(1− t)dt

=

∫ 1

0

(1− t)(τ−σ+ϵ+1)/2−1t(σ−τ+ϵ+1)/2−1dt

= B

[
1

2
(τ − σ + ϵ+ 1) ,

1

2
(σ − τ + ϵ+ 1)

]
.

This result is consistent with the application of Theorem 3.1 in Example 1, under the
following remark:∫ +∞

0

∫ +∞

0

f(x)g(y)

(x+ y)ϵ
×

√
xy

x+ y
xτyσdxdy =

∫ +∞

0

∫ +∞

0

f(x)g(y)

(x+ y)ϵ◦
xτ◦yσ◦dxdy,

with ϵ◦ = ϵ+ 1, τ◦ = τ + 1/2 and σ◦ = σ + 1/2.

Example 3. A more sophisticated example is now developed. For any a > 0, b > 0,
c > 0 and d > 0, let us consider

T (x, y) =
xcyd

(ax+ by)c+d
.
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Then it is clear that T (x, y) is positive and homogeneous of degree 0. In the setting of
Theorem 3.1, let us set τ = σ = 0 and ϵ = 0. Based on this theorem, we find that∫ +∞

0

∫ +∞

0

f(x)g(y)
xcyd

(ax+ by)c+d
dxdy

≤ C0,0,0,[T ]

√∫ +∞

0

xf2(x)dx

√∫ +∞

0

xg2(x)dx,

where

C0,0,0,[T ] =

∫ 1

0

(1− t)−1t−1 (1− t)ctd

[a(1− t) + bt]c+d
dt =

∫ 1

0

(1− t)c−1td−1

[a(1− t) + bt]c+d
dt.

In order to deal with a precise referenced integral formula, we do the change of variables
t = sin2(θ). We thus obtain

C0,0,0,[T ] = 2

∫ π/2

0

cos2c−1(θ) sin2d−1(θ)

[a cos2(θ) + b sin2(θ)]c+d
dθ.

Since τ − σ + ϵ + (σ − τ + ϵ) = 2ϵ, it follows from the applications of [7, 3.642.1], also
recalled in the appendix, that

C0,0,0,[T ] =
1

acbd
B (c, d) .

Example 4. Another complex example is now developed. For any a > 0, b > 0, c > 0
and d > 0, let us consider

T (x, y) =
a
√
x+ b

√
y

c
√
x+ d

√
y
.

Then it is clear that T (x, y) is positive and homogeneous of degree 0. Considering the
special case τ = σ and ϵ = 1, Theorem 3.1 implies that∫ +∞

0

∫ +∞

0

f(x)g(y)

x+ y
×
a
√
x+ b

√
y

c
√
x+ d

√
y
xσyσdxdy

≤ C1,σ,σ,[T ]

√∫ +∞

0

x2σf2(x)dx

√∫ +∞

0

x2σg2(x)dx,

where

C1,σ,σ,[T ] =

∫ 1

0

1√
t(1− t)

a
√
1− t+ b

√
t

c
√
1− t+ d

√
t
dt.

In order to deal with some referenced integral formulas, we propose the change of variables
t = sin2(θ). We thus obtain

C1,σ,σ,[T ] = 2

∫ π/2

0

a cos(θ) + b sin(θ)

c cos(θ) + d sin(θ)
dθ.

Let us now consider the lemma below.

Lemma 3.2. Let a ∈ R, b ∈ R, c > 0 and d > 0. Then we have∫ π/2

0

a cos(x) + b sin(x)

c cos(x) + d sin(x)
dx =

1

c2 + d2

[
(bc− ad) log

( c
d

)
+ (bd+ ac)

π

2

]
.
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The detailed proof of this lemma is given in the appendix. It follows immediately from
this result that

C1,σ,σ,[T ] =
2

c2 + d2

[
(bc− ad) log

( c
d

)
+ (bd+ ac)

π

2

]
.

Note that C1,σ,σ,[T ] does not depend on σ.

So many more configurations for T (x, y) can be considered, but without necessarily
having a closed form expression for Cϵ,τ,σ,[T ].

3.2. Secondary result

In a sense, Theorem 3.1 is capable of self-expansion, with the addition of two more
tuning parameters. This claim is developed in the result below.

Proposition 3.3. Let ϵ ≥ 0, τ ≥ 0, σ ≥ 0, µ > 0, ν > 0, f : [0,+∞) → [0,+∞)
and g : [0,+∞) → [0,+∞) be two functions, and T : [0,+∞)2 → [0,+∞) be a bivariate
function satisfying the following property depending on µ and ν: For any λ > 0, we have

T (λ1/µx, λ1/νy) = T (x, y).

Then we have∫ +∞

0

∫ +∞

0

f(x)g(y)

(xµ + yν)ϵ
T (x, y)xτyσdxdy

≤ Dϵ,τ,σ,µ,ν,[T ]

√∫ +∞

0

xτ+(σ+1)µ/ν−µϵf2(x)dx

√∫ +∞

0

x(τ+1)ν/µ+σ−νϵg2(x)dx,

where

Dϵ,τ,σ,µ,ν,[T ] =
1

√
µν

∫ 1

0

(1− t)[(τ+1)/µ−(σ+1)/ν+ϵ]/2−1t[(σ+1)/ν−(τ+1)/µ+ϵ]/2−1×

T [(1− t)1/µ, t1/ν ]dt,

provided that the integrals on the right-hand side of the inequality exist.

Proof. For the first step, by the change of variables p = xµ and q = yν , we have∫ +∞

0

∫ +∞

0

f(x)g(y)

(xµ + yν)ϵ
T (x, y)xτyσdxdy

=
1

µν

∫ +∞

0

∫ +∞

0

f(p1/µ)g(q1/ν)

(p+ q)ϵ
T (p1/µ, q1/ν)p(τ+1)/µ−1q(σ+1)/ν−1dpdq

=
1

µν

∫ +∞

0

∫ +∞

0

f∗(p)g∗(q)

(p+ q)ϵ
T∗(p, q)p

τ∗qσ∗dpdq, (3.3)

where

f∗(p) = f(p1/µ), g∗(q) = g(q1/ν), T∗(p, q) = T (p1/µ, q1/ν),

and

τ∗ =
1

µ
(τ + 1)− 1, σ∗ =

1

ν
(σ + 1)− 1.
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Thanks to the assumption made on T (x, y), for any λ > 0, we have

T∗(λp, λq) = T
[
(λp)1/µ, (λq)1/ν

]
= T

[
λ1/µp1/µ, λ1/νq1/ν

]
= T

[
p1/µ, q1/ν

]
= T∗(p, q).

This implies that T∗(p, q) is homogeneous of degree 0. Therefore, we can apply Theorem
3.1 under this exact configuration, which gives∫ +∞

0

∫ +∞

0

f∗(p)g∗(q)

(p+ q)ϵ
T∗(p, q)p

τ∗qσ∗dpdq

≤ Cϵ,τ∗,σ∗,[T∗]

√∫ +∞

0

pτ∗+σ∗−ϵ+1f2∗ (p)dp

√∫ +∞

0

qτ∗+σ∗−ϵ+1g2∗(q)dq, (3.4)

with

Cϵ,τ∗,σ∗,[T∗] =

∫ 1

0

(1− t)(τ∗−σ∗+ϵ)/2−1t(σ∗−τ∗+ϵ)/2−1T∗(1− t, t)dt

=

∫ 1

0

(1− t)[(τ+1)/µ−(σ+1)/ν+ϵ]/2−1t[(σ+1)/ν−(τ+1)/µ+ϵ]/2−1T [(1− t)1/µ, t1/ν ]dt

=
√
µνDϵ,τ,σ,µ,ν,[T ].

Considering the changes of variables p = xµ and q = xν independently, we have√∫ +∞

0

pτ∗+σ∗−ϵ+1f2∗ (p)dp

√∫ +∞

0

qτ∗+σ∗−ϵ+1g2∗(q)dq

=

√∫ +∞

0

p(τ+1)/µ+(σ+1)/ν−ϵ−1f2(p1/µ)dp×√∫ +∞

0

q(τ+1)/µ+(σ+1)/ν−ϵ−1g2(q1/ν)dq

=
√
µν

√∫ +∞

0

xτ+(σ+1)µ/ν−µϵf2(x)dx

√∫ +∞

0

x(τ+1)ν/µ+σ−νϵg2(x)dx. (3.5)

If we combine Equations (3.3), (3.4) and (3.5), we obtain∫ +∞

0

∫ +∞

0

f(x)g(y)

(xµ + yν)ϵ
T (x, y)xτyσdxdy

≤ 1

µν

√
µν

√
µνDϵ,τ,σ,µ,ν,[T ]

√∫ +∞

0

xτ+(σ+1)µ/ν−µϵf2(x)dx×√∫ +∞

0

x(τ+1)ν/µ+σ−νϵg2(x)dx

= Dϵ,τ,σ,µ,ν,[T ]

√∫ +∞

0

xτ+(σ+1)µ/ν−µϵf2(x)dx

√∫ +∞

0

x(τ+1)ν/µ+σ−νϵg2(x)dx.

This ends the proof of Proposition 3.3.
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Clearly, by selecting µ = 1 and ν = 1, Proposition 3.3 becomes Theorem 3.1. Taking
T (x, y) = 1, we get∫ +∞

0

∫ +∞

0

f(x)g(y)

(xµ + yν)ϵ
xτyσdxdy

≤ Dϵ,τ,σ,µ,ν,[T ]

√∫ +∞

0

xτ+(σ+1)µ/ν−µϵf2(x)dx

√∫ +∞

0

x(τ+1)ν/µ+σ−νϵg2(x)dx,

where

Dϵ,τ,σ,µ,ν,[T ] =
1

√
µν

∫ 1

0

(1− t)[(τ+1)/µ−(σ+1)/ν+ϵ]/2−1t[(σ+1)/ν−(τ+1)/µ+ϵ]/2−1dt

=
1

√
µν
B

{
1

2

[
1

µ
(τ + 1)− 1

ν
(σ + 1) + ϵ

]
,
1

2

[
1

ν
(σ + 1)− 1

µ
(τ + 1) + ϵ

]}
.

So many more results of this kind can be determined with more complex choices for
T (x, y). This, in addition to the use of multiple tuning parameters, shows the generality
of Proposition 3.3 and Theorem 2.1.

4. Conclusion

In conclusion, this paper reintroduces and extends the approach of David C. Ullrich in
2013 by deriving two new generalized Hilbert integral inequalities. They are innovative
in the following sense: the first one considers an original domain of integration, a triangle
depending on a tuning parameter, and the second one includes several tuning parameters
and a general homogeneous kernel of degree 0. The results presented thus highlight the
versatility, relative simplicity and elegance of this approach. They also bring new insights
to the field, with specific examples illustrating its potential for further exploration.

In particular, one possible perspective is to show that the “parametric functions” ob-
tained in the upper bounds are optimal in the mathematical sense. One might also
consider investigating the upper bound for the following variant of the double integral in
Theorem 2.1:∫ β

0

[∫ β−xδ

0

f(x)g(y)

(x+ y)ϵ
dy

]
dx,

where δ > 0 is a new additional parameter, as well as some kinds of multidimensional
versions. We will leave these possibilities for future work.
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Appendix

• Fubini-Tonelli integral theorem. Let (X,A, ϕ) and (Y,B, ψ) be σ-finite measure
spaces and f : X × Y 7→ [0,+∞) be a measurable function. Then the following
equalities hold:∫

X×Y

f(x, y)d(ϕ× ψ)(x, y) =

∫
X

[∫
Y

f(x, y)dψ(y)

]
dϕ(x)

=

∫
Y

[∫
X

f(x, y)dϕ(x)

]
dψ(y).

Note that the exchange of the order of integration holds true even if the integrals are
divergent.

• Exact statement of [7, 3.642.1]. Let µ > 0 and ν > 0. Then we have∫ π/2

0

sin2µ−1(x) cos2ν−1(x)

[a2 sin2(x) + b2 cos2(x)]µ+ν
dx =

1

2a2µb2ν
B (µ, ν) .

• Proof of Lemma 3.2. Applying the change of variables t = tan(x), so dt =
[1 + tan2(x)]dx = (1 + t2)dx, we get∫ π/2

0

a cos(x) + b sin(x)

c cos(x) + d sin(x)
dx =

∫ π/2

0

a+ b tan(x)

c+ d tan(x)
dx =

∫ +∞

0

a+ bt

(c+ dt)(1 + t2)
dt.

A fractional decomposition in simple elements gives

a+ bt

(c+ dt)(1 + t2)
=

U

c+ dt
+
V t+W

1 + t2
,

where

U =
d(ad− bc)

c2 + d2
, V =

bc− ad

c2 + d2
, W =

ac+ bd

c2 + d2
.

Using appropriate primitives and noticing that U = −dV , we obtain∫ +∞

0

a+ bt

(c+ dt)(1 + t2)
dt =

[
U

d
log(c+ dt) +

V

2
log(1 + t2) +W arctan(t)

]t→+∞

t=0

=

{
V log

[√
1 + t2

c+ dt

]
+W arctan(t)

}t→+∞

t=0

= −V log(d) +W
π

2
− [−V log(c)] = V log

( c
d

)
+W

π

2

=
1

c2 + d2

[
(bc− ad) log

( c
d

)
+ (bd+ ac)

π

2

]
.

This concludes the proof of Lemma 3.2.
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