
ISSN 2985-7619

Hilbert Journal of Mathematical Analysis

Volume 3 Number 2 (2025)
Pages 001–011

https://hilbertjma.org

A new type of convergence in partial metric spaces

Elif N. Yıldırım1, Fatih Nuray2,∗

1Department of Mathematics, Istanbul Commerce University, İstanbul, Turkey
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Abstract In this paper, we introduce the concept of deferred statistical convergence in partial metric

spaces (pms), extending classical notions of statistical convergence and summability. We define deferred

Cesàro summability and investigate its fundamental properties. Connections between statistical con-

vergence and deferred Cesàro summability are explored, including inclusion relationships and strictness.

Additionally, we establish conditions under which deferred summability implies statistical convergence

and vice versa. Examples and theorems are provided to illustrate the applicability and relevance of these

concepts in partial metric spaces.
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1. Introduction

Statistical convergence extends the classical notion of convergence by incorporating the
density of index sets. Given a subset S ⊆ N, its density δ(S) is given by

δ(S) = lim
n→∞

1

n

n∑
j=1

IS(j),

whenever the limit exists, where IS denotes the indicator function of S, defined as

IS(j) =

{
1, j ∈ S,

0, j /∈ S.

This density-based approach allows for a more flexible analysis of sequence behavior, par-
ticularly in cases where traditional pointwise convergence fails. The concept of statistical
convergence was independently introduced by Steinhaus [13] and Fast [4] in the early
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1950s. A sequence {ξn} of real or complex numbers is said to be statistically convergent
to ξ, denoted as st- lim ξn = ξ, if for every ε > 0,

δ({k ∈ N : |ξk − ξ| ≥ ε}) = 0.

Equivalently, there exists a subset S ⊆ N with δ(S) = 1 such that for all sufficiently large
indices k ∈ S, we have |ξk − ξ| < ε; see [5]. This definition extends classical convergence
by allowing a sequence to converge “almost everywhere” in terms of density rather than
requiring convergence for all indices beyond some fixed threshold.

Furthermore, a sequence {ξn} is called statistically Cauchy if, for each ε > 0, there
exists N ∈ N such that

δ({k ∈ N : |ξk − ξN | ≥ ε}) = 0.

This condition ensures that, with density one, the terms of the sequence become arbitrarily
close to each other as the index grows.

In recent decades, statistical convergence has gained significant importance in various
branches of mathematics, including summability theory, number theory, probability, mea-
sure theory, optimization, and approximation theory. Its flexibility in handling irregular
sequences has led to numerous extensions and applications across different mathematical
fields.

Deferred statistical convergence, a more recent generalization, introduces two sequences
{ν(n)} and {ω(n)}, which determine intervals for assessing convergence. This refinement
has proven useful for sequences with non-uniform structures, offering new insights into
summability theory and metric spaces.

In [1], Agnew introduced the concept of the deferred Cesàro mean for sequences of real
or complex numbers {ξk}. This mean is defined as

(Dν,ωx)n =
1

ω(n)− ν(n)

ω(n)∑
k=ν(n)+1

ξk, n = 1, 2, 3, . . . ,

where ν = {ν(n)} and ω = {ω(n)} are sequences of non-negative integers satisfying

ν(n) < ω(n) and lim
n→∞

ω(n) = ∞.

Unlike the classical Cesàro mean, which averages terms starting from the first element
of the sequence, the deferred Cesàro mean operates over a more flexible interval [ν(n) +
1, ω(n)]. By adjusting the selection of terms included in the averaging process, this
approach extends the applicability of Cesàro-type summability methods, offering greater
versatility in the study of sequence convergence and related topics.

Partial metric spaces (pms) (S, d), first introduced by S. Matthews in 1994, provide a
natural extension of classical metric spaces by relaxing the condition d(a, a) = 0 for all
a ∈ S. In a pms (S, d), the self-distance d(a, a) may be nonzero, reflecting a broader and
more flexible framework for distance measurement. This generalization has enabled pms
to find diverse applications across various fields, including topology, computer science,
information theory, and biological sciences [8].

A key result in fixed-point theory, the Banach contraction principle, originally de-
veloped for complete metric spaces, has been extended to pms. These extensions often
involve generalizing the class of mappings, broadening the domain, or combining both
approaches, demonstrating the versatility of pms in theoretical and applied mathematics.
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This paper defines deferred statistical convergence in pms and investigates its founda-
tional properties. We also provide examples and examine their connections to existing
notions of convergence.

This paper is built upon the concepts and results presented in the foundation works
[1]-[14]. Interested readers may refer to these papers for additional background and com-
prehensive discussions on the topics of statistical convergence, deferred Cesàro means,
and pms.

2. Preliminaries

Definition 2.1. A partial metric space (pms) consists of a pair (S, d), where S is a
nonempty set, and d : S×S → R+ is a function satisfying the following conditions for all
a, b, c ∈ S.

(1) d(a, a) ≤ d(a, b) (self-referential property),

(2) d(a, b) = d(b, a) (symmetry condition),

(3) If d(a, a) = d(b, b) = d(a, b), then a = b (identity property),

(4) d(a, b) ≤ d(a, c) + d(c, b)− d(c, c) (generalized triangle inequality).

This framework generalizes classical metric spaces by allowing self-distances d(a, a) to be
nonzero, making it particularly useful in domain theory and computational models.

The topology induced by a partial metric d is generated by modified open balls, see
[8], Bd(x, ε) = {y ∈ S : d(x, y) < d(x, x) + ε}. Every metric space is also a partial metric
space, but not every partial metric space is a metric space. Let p be a partial metric on
S. Define ps : S × S → [0,∞) by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y).

Then ps is a (classical) metric on S.

Example 2.2. Let S = [0,∞) and define a partial metric p : S × S → [0,∞) by

p(x, y) = max{x, y}.

Consider the sequence (xn) defined by

xn =

{
0, if n is even,

1, if n is odd,
and let x = 1.

(i) In the classical metric d(x, y) = |x− y|: The sequence alternates between 0 and 1, so
we compute

|xn − 1| =

{
1, if n is even,

0, if n is odd.

Thus, the sequence does not converge to x = 1 in the usual metric, as it does not have a
limit in the standard sense.
(ii) In the partial metric p(x, y) = max{x, y}: We compute

p(xn, 1) = max{xn, 1} = 1 for all n,

and

p(1, 1) = max{1, 1} = 1.



4 Hilbert J. Math. Anal. Vol. 3-2 (2025) /E. N. Yıldırım et al.

Hence,

lim
n→∞

p(xn, 1) = 1 = p(1, 1),

which means xn → 1 in the partial metric space (S, p). This example shows that a
sequence may converge in a partial metric space without converging in the classical metric.
It highlights a fundamental distinction between the two notions of convergence.

In the context of sequence analysis, the concept of deferred statistical convergence
(D-statistical convergence) involves two integer sequences, {ν(n)} and {ω(n)}, satisfying
ν(n) < ω(n) and ω(n) → ∞. A sequence {ξk} is said to be D-statistically convergent to
L if for any ε > 0, see [7],

lim
n→∞

1

ω(n)− ν(n)
|{k | ν(n) < k ≤ ω(n), |ξk − L| ≥ ε}| = 0.

Here, the notation | · | denotes the cardinality of the enclosed set.
In the setting of pms (S, d), a sequence {ξk} is said to be statistically convergent to

a ∈ S if, see [10],

δ({k ∈ N : |d(ξk, a)− d(a, a)| ≥ ε}) = 0, ∀ε > 0.

This formulation extends statistical convergence by incorporating the structural flexibility
of pms.

3. D-Statistical Convergence and D-Cesàro Summability

In this section, we define the notions of D-statistical convergence and D-strong Cesàro
summability within the framework of pms.

Definition 3.1. Let (S, d) be a pms, and consider two sequences of nonnegative integers,
{ν(n)} and {ω(n)}, such that ν(n) < ω(n) and ω(n) → ∞. A sequence {ξk} in S is said
to be D-statistically convergent to a ∈ S if for any ε > 0,

lim
n→∞

1

ω(n)− ν(n)
|{k | ν(n) < k ≤ ω(n), d(ξk, a)− d(a, a) ≥ ε}| = 0.

Moreover, we write DSd,ν,ω- lim ξk = a or ξk → a (DSd,ν,ω) whenever {ξk} is D-
statistically convergent to a.

Example 3.2. Consider the space S = R with the function d(x, y) = max{x, y}. Let the
sequence be defined as ξk = 1

k , with ν(n) = n− 1 and ω(n) = n+1. Then, it follows that
{ξk} is D-statistically convergent to 0 as n → ∞.

Definition 3.3. Given a pms (S, d) and sequences {ν(n)} and {ω(n)} of nonnegative
integers such that ν(n) < ω(n) and ω(n) → ∞, a sequence {ξk} in S is said to be
D-strongly Cesàro summable to ξ ∈ S if

lim
n→∞

1

ω(n)− ν(n)

ω(n)∑
k=ν(n)+1

|d(ξk, ξ)− d(ξ, ξ)| = 0.

This summability is represented by

Dwdd,ν,ω- lim ξk = ξ or ξk → ξ (Dwdd,ν,ω).

The set of all such sequences is denoted as Dwdd,ν,ω.
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If the sequences {ω(n)} and {ν(n)} are chosen such that ω(n) = n and ν(n) = 0 for
all n ∈ N, the concept of D-strong Cesàro summability coincides with the classical strong
Cesàro summability, since the deferred averaging process aligns with the standard Cesàro
mean.

Example 3.4. Consider the pms (S, d), where S = [0,∞) and the partial metric is
defined as d(x, y) = max{x, y}. Define the sequence {ξk} as follows.

ξk =

{
1
k , if k is a perfect square,

1, otherwise.

We will demonstrate that the sequence {ξk} is not D-convergent but is D-statistically
convergent to 1 using ν(n) = n and ω(n) = 2n. To check whether {ξk} is D-convergent
to 1, we need to verify the condition

lim
n→∞

1

ω(n)− ν(n)

ω(n)∑
k=ν(n)+1

|d(ξk, 1)− d(1, 1)| = 0.

Here, d(ξk, 1) = max{ξk, 1}, and d(1, 1) = 1. For perfect squares k = m2, ξk = 1
k .

Therefore,

|d(ξk, 1)− d(1, 1)| =

{
1− 1 = 0, if ξk ≤ 1,
1
k − 1, if ξk > 1.

For non-perfect squares, ξk = 1, so |d(ξk, 1) − d(1, 1)| = 0. The contribution of perfect
squares prevents the sum from approaching 0, hence {ξk} is not D-convergent.

Now, we verify D-statistical convergence to 1. Define the set

An,ε = {k : ν(n) < k ≤ ω(n), |d(ξk, 1)− d(1, 1)| ≥ ε} .
This set includes only perfect squares k = m2 such that

|d(ξk, 1)− d(1, 1)| = 1

k
− 1 ≥ ε =⇒ k ≤ 1

1 + ε
.

For ν(n) = n and ω(n) = 2n, the number of perfect squares in the interval ν(n) < k ≤
ω(n) is

|An,ε| = ⌊
√
2n⌋ − ⌊

√
n⌋.

The D-statistical density is then

|An,ε|
ω(n)− ν(n)

=
⌊
√
2n⌋ − ⌊

√
n⌋

n
.

Simplifying this expression, we have
√
2n−

√
n

n
=

√
n(
√
2− 1)

n
=

√
2− 1√
n

.

As n → ∞, the density approaches 0:

lim
n→∞

|An,ε|
ω(n)− ν(n)

= 0.

This proves that {ξk} is D-statistically convergent to 1.

Theorem 3.5. Let (S, d) be a pms, and let {ξk}, {αk} be sequences in S. Then
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(i) If DSd,ν,ω- lim ξk = ξ0 and DSd,ν,ω- limαk = α0, then

DSd,ν,ω- lim(ξk + αk) = ξ0 + α0,

provided that addition is defined in S.
(ii) If DSd,ν,ω- lim ξk = ξ0 and c ∈ C, then

DSd,ν,ω- lim(cξk) = cξ0,

provided that scalar multiplication is defined in S.
(iii) If DSd,ν,ω- lim ξk = ξ0, DSd,ν,ω- limαk = α0, and {ξk}, {αk} ∈ ℓ∞, then

DSd,ν,ω- lim(ξkαk) = ξ0α0,

where ℓ∞ is the space of bounded sequences in S.

Proof. (i) Given DSd,ν,ω- lim ξk = ξ0 and DSd,ν,ω-limαk = α0, we will show that

DSd,ν,ω- lim(ξk + αk) = ξ0 + α0.

By the properties of the partial metric,

d(ξk + αk, ξ0 + α0) ≤ d(ξk, ξ0) + d(αk, α0).

Since both sequences are D-statistically convergent, the density of indices where d(ξk, ξ0)+
d(αk, α0) ≥ ε vanishes as n → ∞, proving the claim.

(ii) For DSd,ν,ω- lim ξk = ξ0 and scalar c ∈ C, we verify DSd,ν,ω- lim(cξk) = cξ0. Using
the metric property,

d(cξk, cξ0) = |c|d(ξk, ξ0),
we see that the density of indices where d(cξk, cξ0) ≥ ε vanishes as n → ∞, ensuring
convergence.

(iii) Given DSd,ν,ω- lim ξk = ξ0, DSd,ν,ω- limαk = α0, and boundedness ξk, αk ∈ ℓ∞,
we show DSd,ν,ω- lim(ξkαk) = ξ0α0. The estimate

d(ξkαk, ξ0α0) ≤ d(ξk, ξ0)|αk|+ d(αk, α0)|ξk|
with bounded ξk, αk implies the density of indices where d(ξkαk, ξ0α0) ≥ ε tends to zero,
proving the result.

The proofs of the following theorems utilize techniques similar to those employed in
[7],[2],[10], and [3]. These foundational works provided inspiration and methodological
guidance for our results. Readers interested in the detailed methodologies are encouraged
to refer to these references for further insights.

Theorem 3.6. Let (S, d) be a pms. Then

Dwdd,ν,ω ⊆ DSd,ν,ω,

and the inclusion is strict.

Proof. The first part of the proof follows directly and is omitted. To establish the strict-
ness of the inclusion, consider the sequences ω(n) = n and ν(n) = 0 for all n ∈ N, and
set a = 0. Define the sequence {ξk} in X by:

ξk =


√
n
2 , if k = n2,

0, otherwise.
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For any ε > 0, we examine

1

ω(n)− ν(n)
|{k ∈ (ν(n), ω(n)] : |d(ξk, 0)− d(0, 0)| ≥ ε}| .

Since |d(ξk, 0) − d(0, 0)| =
√
n
2 only for indices k = n2, the proportion of such indices is

given by

1

ω(n)− ν(n)
|{k ≤ n : k = n2}| =

√
n

n
→ 0 as n → ∞.

Thus, ξk is D-statistically convergent to 0, i.e., ξk → 0 in the sense of DSd,ν,ω.
Next, we consider the Cesàro mean

1

ω(n)− ν(n)

ω(n)∑
k=ν(n)+1

|d(ξk, 0)− d(0, 0)|.

Since |d(ξk, 0)− d(0, 0)| =
√
n
2 for k = n2, the sum evaluates to

1

ω(n)− ν(n)

√
n∑

m=1

√
n

2
=

√
n

2
·
√
n

n
=

n

2n
=

1

2
.

Since this does not tend to zero as n → ∞, it follows that ξk is not strongly D-Cesàro
summable to 0, meaning ξk /∈ Dwdd,ν,ω.

This demonstrates that Dwdd,ν,ω ⊆ DSd,ν,ω, but the inclusion is strict.

Theorem 3.7. If lim infn→∞
ω(n)
ν(n) > 1, then Sd ⊆ DSd,ν,ω.

Proof. Assume that lim infn→∞
ω(n)
ν(n) > 1; we can find a η > 0 such that ω(n)

ν(n) ≥ 1 + η for

sufficiently large n. This implies

ω(n)− ν(n)

ω(n)
≥ η

1 + η
=⇒ 1

ω(n)
≥ η

(1 + η)(ω(n)− ν(n))
.

If ξk → a in the sense of Sd, then for every ε > 0 and sufficiently large n, we have

1

ω(n)
|{k ≤ ω(n) : |d(ξk, a)− d(a, a)| ≥ ε}|

≥ 1

ω(n)
|{ν(n) < k ≤ ω(n) : |d(ξk, a)− d(a, a)| ≥ ε}| .

Using the above inequality, we obtain

1

ω(n)
|{ν(n) < k ≤ ω(n) : |d(ξk, a)− d(a, a)| ≥ ε}|

≥ η

1 + η

1

ω(n)− ν(n)
|{ν(n) < k ≤ ω(n) : |d(ξk, a)− d(a, a)| ≥ ε}| .

Thus, Sd ⊆ DSd,ν,ω.

Theorem 3.8. If limn→∞ inf ω(n)−ν(n)
n > 0 and ω(n) < n, then Sd ⊆ DSd,ν,ω.
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Proof. Let limn→∞ inf ω(n)−ν(n)
n > 0 and ω(n) < n. Then, for every ε > 0, the inclusion

{k ≤ n : |d(ξk, a)− d(a, a)| ≥ ε} ⊇ {ν(n) < k ≤ ω(n) : |d(ξk, a)− d(a, a)| ≥ ε}

is satisfied. Using this, we have

1

n
|{k ≤ n : |d(ξk, a)− d(a, a)| ≥ ε}|

≥ 1

n
|{ν(n) < k ≤ ω(n) : |d(ξk, a)− d(a, a)| ≥ ε}| .

Simplifying further,

1

n
|{ν(n) < k ≤ ω(n) : |d(ξk, a)− d(a, a)| ≥ ε}|

=
ω(n)− ν(n)

n
· 1

ω(n)− ν(n)
|{ν(n) < k ≤ ω(n) : |d(ξk, a)− d(a, a)| ≥ ε}| .

Thus, Sd ⊆ DSd,ν,ω.

Theorem 3.9. Let {ν(n)}, {ω(n)}, {ν0(n)}, and {ω0(n)} be four sequences of non-
negative integers such that

ν0(n) < ν(n) < ω(n) < ω0(n) for all n ∈ N.

Then,

(i) If limn→∞[ω(n)− ν(n)][ω0(n)− ν0(n)]
−1 = µ > 0, then DSd,ν0,ω0 ⊆ DSd,ν,ω.

(ii) If limn→∞[ω0(n)− ν0(n)][ω(n)− ν(n)]−1 = 1, then DSd,ν,ω ⊆ DSd,ν0,ω0
.

Proof. (i) Suppose that

lim
n→∞

[ω(n)− ν(n)][ω0(n)− ν0(n)]
−1 = µ > 0.

For a given ε > 0, consider

{ν0(n) < k ≤ ω0(n) : |d(ξk, a)− d(a, a)| ≥ ε}
⊇ {ν(n) < k ≤ ω(n) : |d(ξk, a)− d(a, a)| ≥ ε}.

Using this inclusion, we have

1

ω0(n)− ν0(n)
|{ν0(n) < k ≤ ω0(n) : |d(ξk, a)− d(a, a)| ≥ ε}|

≥ [ω(n)− ν(n)][ω0(n)− ν0(n)]
−1

· 1

ω(n)− ν(n)
|{ν(n) < k ≤ ω(n) : |d(ξk, a)− d(a, a)| ≥ ε}| .

As n → ∞, the left-hand side shows that ξk → a in the sense of DSd,ν0,ω0 implies ξk → a
in the sense of DSd,ν,ω. Thus, DSd,ν0,ω0 ⊆ DSd,ν,ω.

(ii) The proof is omitted since it relies on analogous reasoning, achieved by interchang-
ing the roles of {ν(n)}, {ω(n)} with {ν0(n)}, {ω0(n)} under the specified condition

lim
n→∞

[ω0(n)− ν0(n)][ω(n)− ν(n)]−1 = 1.
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Theorem 3.10. Let {ν(n)}, {ω(n)}, {ν0(n)}, and {ω0(n)} be sequences of non-negative
integers satisfying the conditions

ν0(n) < ν(n) < ω(n) < ω0(n), ∀n ∈ N.

Then, the following statements hold:

(i) If limn→∞[ω(n)−ν(n)][ω0(n)−ν0(n)]
−1 = µ > 0, and if a sequence is strongly

Dwdd,ν0,ω0
-summable to ξ, then it is also DSd,ν,ω-convergent to ξ.

(ii) If limn→∞[ω0(n) − ν0(n)][ω(n) − ν(n)]−1 = 1, and if {ξk} is a bounded se-
quence such that ξk is DSd,ν,ω-convergent to ξ, then it follows that {ξk} is strongly
Dwdd,ν0,ω0

-summable to ξ.

Proof. (i) This follows directly from the definition and is omitted.
(ii) Suppose that DSd,ν,ω-lim ξk = ξ and that {ξk} is a bounded sequence. Then, there

exists some constant M > 0 such that d(ξk, ξ) < M for all k. Given ε > 0, we can express

1

ω0(n)− ν0(n)

ω0(n)∑
k=ν0(n)+1

d(ξk, ξ) =
1

ω0(n)− ν0(n)

ω0(n)∑
k=ω(n)+1

d(ξk, ξ)

+
1

ω0(n)− ν0(n)

ω(n)∑
k=ν(n)+1

d(ξk, ξ).

Using the boundedness of d(ξk, ξ), we obtain

1

ω0(n)− ν0(n)

ω0(n)∑
k=ν0(n)+1

d(ξk, ξ) ≤
(
[ω0(n)− ω(n)][ω0(n)− ν0(n)]

−1
)
M

+
1

ω0(n)− ν0(n)

ω(n)∑
k=ν(n)+1

d(ξk, ξ).

By the given assumption, the term

[ω0(n)− ν0(n)][ω(n)− ν(n)]−1 − 1

contributes to the first part, while the second term satisfies

1

ω(n)− ν(n)

ω(n)∑
k=ν(n)+1

d(ξk, ξ) < ε.

Thus, the sequence is strongly Dwdd,ν0,ω0
-summable to ξ, completing the proof.

Definition 3.11. Let (S, d) be a pms. A sequence {ξk} in S is called strongly D-r-Cesàro
summable to ξ ∈ S if the following condition holds,

lim
n→∞

1

ω(n)− ν(n)

ω(n)∑
k=ν(n)+1

|d(ξk, ξ)− d(ξ, ξ)|r = 0.

In this case, we write

Dwdrd,ν,ω- lim ξk = ξ or ξk → ξ (Dwdrd,ν,ω).
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Theorem 3.12. Let (S, d) be a pms, and let {ξk} be a sequence in S. If {ξk} is strongly
D-r-Cesàro summable to an element ξ ∈ S, then it is also statistically convergent to
ξ. Conversely, if {ξk} is bounded and statistically convergent to ξ, then it is strongly
D-r-Cesàro summable to ξ.

Proof. Suppose {ξk} is strongly D-r-Cesàro summable to ξ. Then, for every ε > 0,

lim
n→∞

1

ω(n)− ν(n)

ω(n)∑
k=ν(n)+1

|d(ξk, ξ)− d(ξ, ξ)|r = 0.

Define Λn = {k : |d(ξk, ξ)− d(ξ, ξ)| ≥ ε}. By the summability assumption,∑
k∈Λn

|d(ξk, ξ)− d(ξ, ξ)|r ≥ |Λn| · εr.

Dividing by ω(n)−ν(n) and taking the limit, it follows that the density of Λn approaches
zero, proving statistical convergence.

Conversely, assume {ξk} is bounded and statistically convergent to ξ, meaning there
exists M > 0 such that |d(ξk, ξ)− d(ξ, ξ)| < M for all k. Define

Λn = {k : |d(ξk, ξ)− d(ξ, ξ)| > (ε/2)1/r}.

Since statistical convergence implies limn→∞
|Λn|

ω(n)−ν(n) = 0, for sufficiently large n,

|Λn|
ω(n)− ν(n)

<
ε

2Mr
.

Now, consider the summation

1

ω(n)− ν(n)

ω(n)∑
k=ν(n)+1

|d(ξk, ξ)− d(ξ, ξ)|r.

Splitting this into contributions from Λn and its complement, the first term satisfies

|Λn|
ω(n)− ν(n)

Mr <
ε

2
.

For k /∈ Λn, we have |d(ξk, ξ)− d(ξ, ξ)|r ≤ (ε/2), leading to

1

ω(n)− ν(n)

∑
k/∈Λn

|d(ξk, ξ)− d(ξ, ξ)|r <
ε

2
.

Thus, summing both parts gives

1

ω(n)− ν(n)

ω(n)∑
k=ν(n)+1

|d(ξk, ξ)− d(ξ, ξ)|r < ε.

This proves strong D-r-Cesàro summability.
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