

Hilbert Journal of Mathematical Analysis Volume 3 Number 2 (2025) Pages 028-033

https://hilbertjma.org

Inclusion between Bourgain-Morrey spaces and their weak types

Aria Pratama^{1,*}, Denny Ivanal Hakim²

- ¹ Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung 40132, Indonesia e-mail: ariapratama@sci.ui.ac.id
- ² Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung 40132, Indonesia e-mail: dhakim@itb.ac.id

Abstract This paper aims to explore the embedding relation between Bourgain-Morrey spaces and weak Bourgain-Morrey spaces. Bourgain-Morrey spaces are important function spaces in harmonic analysis. In this article, we introduce weak Bourgain-Morrey spaces as a certain generalization of weak Morrey spaces. We investigate the necessary and sufficient conditions for functions in weak Bourgain-Morrey spaces to also be elements in Bourgain-Morrey spaces, and vice versa. Our results are the inclusion of weak Bourgain-Morrey spaces and the inclusion of weak Bourgain-Morrey spaces into a certain Bourgain-Morrey space. These results generalize the inclusion result in Morrey spaces, weak Morrey spaces, and Bourgain-Morrey spaces.

MSC: 42B35; 46E30

Keywords: Bourgain-Morrey space; Morrey space; weak Morrey space; inclusion property

Received: 28-02-2025 / Accepted: 14-07-2025 / Published: 23-07-2025 DOI: https://doi.org/10.62918/hjma.v3i2.35

1. Introduction

Morrey spaces were first introduced by C. B. Morrey in [5]. Let $1 \leq q \leq p < \infty$. Define Morrey space $\mathcal{M}_q^p = \mathcal{M}_q^p(\mathbb{R}^n)$ as a set of all $f \in L^q_{loc}(\mathbb{R}^n)$ where

$$||f||_{\mathcal{M}_q^p} = \sup_{B(a,r)} |B(a,r)|^{\frac{1}{p} - \frac{1}{q}} \left(\int_{B(a,r)} |f(x)|^q dx \right)^{\frac{1}{q}} < \infty.$$

Morrey spaces are a generalization of Lebesgue spaces; hence \mathcal{M}_p^p is the Lebesgue space L^p . Inclusion in Morrey spaces has been discussed in [1–3, 8]. Inclusion of the generalization of Morrey spaces has also been widely discussed. In [8], inclusion in mixed Morrey spaces has been introduced and discussed, and in [2], inclusion in weak Morrey spaces has been introduced and discussed. In [4], the Bourgain-Morrey spaces are introduced, which are

^{*}Corresponding author.

a generalization of the Morrey spaces. Adapting Definition 2.1, we define weak Bourgain-Morrey spaces in Definition 3.1 as a generalization of the Bourgain-Morrey spaces. Our main result in this paper is the inclusion of weak Bourgain-Morrey spaces.

2. Preliminaries

Adapting the extension of the Lebesgue spaces L^p into a weak Lebesgue space wL^p , weak Morrey spaces can also be defined. Weak Morrey spaces were introduced by Gunawan et al. in [2] with the following definition.

Definition 2.1. [2] For $1 \le q \le p < \infty$, weak Morrey space $w\mathcal{M}_q^p = w\mathcal{M}_q^p(\mathbb{R}^n)$ is the set of all measurable function f for which $||f||_{w\mathcal{M}_q^p} < \infty$ where

$$||f||_{w\mathcal{M}_q^p} = \sup_{\gamma > 0} \|\gamma \chi_{\{|f| > \gamma\}}\|_{\mathcal{M}_q^p}.$$

Based on definition of Morrey space in [7], $||f||_{w\mathcal{M}^p_q}$ can be expressed as

$$||f||_{w\mathcal{M}_q^p} = \sup_{a \in \mathbb{R}^n, r > 0, \gamma > 0} |B(a, r)|^{\frac{1}{p} - \frac{1}{q}} \left(\int_{B(a, r)} |\gamma \chi_{\{|f| > \gamma\}}(x)|^q dx \right)^{\frac{1}{q}}.$$

In this definition, B(a,r) is an open ball centered at $a \in \mathbb{R}^n$ with radius r > 0 and |B(a,r)| denotes its Lebesgue measure. By using the inequality $|\gamma\chi_{\{|f|>\gamma\}}| \leq |f|$ for every $\gamma > 0$, we have $\mathcal{M}_q^p \subseteq w\mathcal{M}_q^p$. The following inclusion properties are discussed in [2].

Theorem 2.2. [2] For $1 \le q_1 \le q_2 \le p < \infty$, the following inclusion holds

$$w\mathcal{M}_{q_2}^p \subseteq w\mathcal{M}_{q_1}^p$$
.

If $q_1 < q_2$, then

$$w\mathcal{M}_{q_2}^p \subseteq \mathcal{M}_{q_1}^p$$
.

Remark 2.3. Based on Theorem 2.2, it is concluded that for $1 \le q_1 < q_2 \le p < \infty$ holds $\mathcal{M}_{q_2}^p \subseteq w \mathcal{M}_{q_2}^p \subseteq \mathcal{M}_{q_1}^p$.

Recall that Q_{vm} are dyadic cubes with a volume 2^{-vn} where

$$Q_{vm} = \prod_{j=1}^{n} \left[\frac{m_j}{2^v}, \frac{m_j + 1}{2^v} \right) \text{ with } v \in \mathbb{Z}, m = (m_1, m_2, \dots, m_n) \in \mathbb{Z}^n.$$

Here, $\left[\frac{m_j}{2^v}, \frac{m_j+1}{2^v}\right) = \left\{x: \frac{m_j}{2^v} \le x < \frac{m_j+1}{2^v}\right\}$. Note that for $1 < q < p < \infty$ and $f \in L^q_{loc}$, the norm of the Morrey space \mathcal{M}^p_q can be expressed as

$$||f||_{\mathcal{M}_q^p} \equiv \sup_{\substack{v \in \mathbb{Z} \\ m \in \mathbb{Z}^n}} |Q_{vm}|^{\frac{1}{p} - \frac{1}{q}} \left(\int_{Q_{vm}} |f(x)|^q dx \right)^{\frac{1}{q}}.$$

Bourgain-Morrey spaces were introduced in [4] as a generalization of Morrey spaces. There are several characteristics that are possessed by Bourgain-Morrey spaces but not by Morrey spaces. For example, Bourgain-Morrey spaces have the density property of the set of smooth functions with compact support, but this property does not hold in

Morrey spaces. We refer the reader to ([6]; Chapter 8). Let us recall the definition of Bourgain-Morrey spaces below.

Definition 2.4. [4] Let $1 \le q \le p < \infty$ and $1 \le r \le \infty$. Define $\mathcal{M}_{q,r}^p = \mathcal{M}_{q,r}^p(\mathbb{R}^n)$ as a set of all $f \in L_{loc}^q$ for which

$$||f||_{\mathcal{M}_{q,r}^{p}} = \left\| \left\{ |Q_{vm}|^{\frac{1}{p} - \frac{1}{q}} \left(\int_{\mathcal{B}(a,r)} |f(x)|^{q} dx \right)^{\frac{1}{q}} \right\}_{v \in \mathbb{Z}, m \in \mathbb{Z}^{n}} \right\|_{\ell^{r}}$$

is finite. Here, $\|\{x_{\nu m}\}_{v \in \mathbb{Z}, m \in \mathbb{Z}^n}\|_{\ell^r} = \begin{cases} \left(\sum_{v \in \mathbb{Z}, m \in \mathbb{Z}^n} |x_{\nu m}|^r\right)^{1/r}, & \text{if } 1 \leq r < \infty, \\ \sup_{v \in \mathbb{Z}, m \in \mathbb{Z}^n} |x_{\nu m}|, & \text{if } r = \infty. \end{cases}$

Remark 2.5. For $r=\infty$, the Bourgain-Morrey space $\mathcal{M}_{q,r}^p$ coincides with the Morrey spaces, $\mathcal{M}_q^p=\mathcal{M}_{q,\infty}^p$. For $r<\infty$, $\mathcal{M}_{q,r}^p$ spaces are smaller than Morrey spaces \mathcal{M}_q^p . In other words, $\mathcal{M}_{q,r}^p\subseteq\mathcal{M}_q^p=\mathcal{M}_{q,\infty}^p$.

The following inclusion properties are discussed in [4] as follows.

Lemma 2.6. [4] Let $1 \le q \le p < r_1 \le r_2 \le \infty$. Then $\mathcal{M}_{q,r_1}^p \subseteq \mathcal{M}_{q,r_2}^p$.

Lemma 2.7. [4] Let $1 \leq q_2 \leq q_1 \leq p < r \leq \infty$. Then $\mathcal{M}_{q_1,r}^p \subseteq \mathcal{M}_{q_2,r}^p$.

3. Main Result

Adapting Definition 2.1, we define the weak Bourgain-Morrey spaces as follows.

Definition 3.1. Let $1 \le q \le p < \infty$ and $1 \le r \le \infty$. The weak Bourgain-Morrey space $w\mathcal{M}_q^p = w\mathcal{M}_q^p(\mathbb{R}^n)$ is the set of all measurable function f for which $||f||_{w\mathcal{M}_q^p} < \infty$ where

$$||f||_{w\mathcal{M}^p_{q,r}} := \sup_{\gamma > 0} \left\| \gamma \chi_{\{|f| > \gamma\}} \right\|_{\mathcal{M}^p_{q,r}}.$$

By Definition 2.4, norm on Definition 3.1 can be stated as

$$||f||_{w\mathcal{M}_{q,r}^p} = \sup_{\gamma > 0} \left\| \left\{ |Q_{vm}|^{\frac{1}{p} - \frac{1}{q}} \left(\int_{Q_{vm}} |\gamma \chi_{\{|f| > \gamma\}}|^q dx \right)^{\frac{1}{q}} \right\}_{v \in \mathbb{Z}, m \in \mathbb{Z}^n} \right\|_{\ell^r}.$$

Similar to weak Morrey spaces, the following inclusions are obtained.

Lemma 3.2. Let $1 \le q \le p < \infty$. Then $\mathcal{M}_{q,r}^p \subseteq w \mathcal{M}_{q,r}^p$ for all $f \in \mathcal{M}_{q,r}^p$.

Proof. Let $f \in \mathcal{M}_q^p$. Because for every $\gamma > 0$ applies $|\gamma \chi_{\{|f| > \gamma\}}| \leq |f|$, then we get

$$|Q_{vm}|^{\frac{1}{p}-\frac{1}{q}} \left(\int\limits_{Q_{vm}} |\gamma \chi_{\{|f|>\gamma\}}(x)|^q dx \right)^{\frac{1}{q}} \le |Q_{vm}|^{\frac{1}{p}-\frac{1}{q}} \left(\int\limits_{Q_{vm}} |f(x)|^q dx \right)^{\frac{1}{q}}.$$

As a result

$$\begin{aligned} & \|f\|_{w\mathcal{M}_{q,r}^{p}} \\ & = \left\| \left\{ |Q_{vm}|^{\frac{1}{p} - \frac{1}{q}} \left(\int\limits_{Q_{vm}} \left| \gamma \chi_{\{|f| > \gamma\}}(x) \right|^{q} dx \right)^{\frac{1}{q}} \right\}_{\substack{v \in \mathbb{Z} \\ m \in \mathbb{Z}^{n}}} \right\|_{l^{r}} \\ & \leq \left\| \left\{ |Q_{vm}|^{\frac{1}{p} - \frac{1}{q}} \left(\int\limits_{Q_{vm}} \left| f(x) \right|^{q} dx \right)^{\frac{1}{q}} \right\}_{\substack{v \in \mathbb{Z} \\ m \in \mathbb{Z}^{n}}} \right\|_{l^{r}} \\ & = \|f\|_{\mathcal{M}_{q,r}^{p}} < \infty. \end{aligned}$$

Therefore $f \in w\mathcal{M}_{q,r}^p$.

Based on Lemma 2.6 and Lemma 2.7, we obtain several inclusion results between weak Bourgain-Morrey space as follows.

Lemma 3.3. Let $1 \le q \le p < r_1 \le r_2 \le \infty$. Then $w\mathcal{M}_{q,r_1}^p \subseteq w\mathcal{M}_{q,r_2}^p$.

Proof. Let $f \in w\mathcal{M}^p_{q,r_1}$. Based on Lemma 2.6, we get $||f||_{\mathcal{M}^p_{q,r_2}} \leq C ||f||_{\mathcal{M}^p_{q,r_1}}$ so that

$$\begin{aligned} \|\gamma \chi_{\{|f| > \gamma\}}\|_{\mathcal{M}_{q,r_2}^p} &\leq C \|\gamma \chi_{\{|f| > \gamma\}}\|_{\mathcal{M}_{q,r_1}^p} \\ &\leq C \sup_{\gamma > 0} \|\gamma \chi_{\{|f| > \gamma\}}\|_{\mathcal{M}_{q,r_1}^p} \\ &= C \|f\|_{w\mathcal{M}_{q,r_1}^p} \\ &\leq \infty \end{aligned}$$

Since the above inequality holds for every $\gamma > 0$, we have

$$\sup_{\gamma>0} \left\| \gamma \chi_{\{|f|>\gamma\}} \right\|_{\mathcal{M}^p_{q,r_2}} = ||f||_{w\mathcal{M}^p_{q,r_2}} < \infty.$$

Therefore $w\mathcal{M}_{q,r_1}^p \subseteq w\mathcal{M}_{q,r_2}^p$.

Lemma 3.4. Let $1 \le q_2 \le q_1 \le p < r \le \infty$. Then $w\mathcal{M}_{q_1,r}^p \subseteq w\mathcal{M}_{q_2,r}^p$.

Proof. Let $f \in w\mathcal{M}^p_{q_1,r}$. Based on Lemma 2.7, we get $||f||_{\mathcal{M}^p_{q_2,r}} \le ||f||_{\mathcal{M}^p_{q_1,r}}$ so that

$$\begin{aligned} \|\gamma \chi_{\{|f| > \gamma\}}\|_{\mathcal{M}^p_{q_2,r}} &\leq \|\gamma \chi_{\{|f| > \gamma\}}\|_{\mathcal{M}^p_{q_1,r}} \\ &\leq \sup_{\gamma > 0} \|\gamma \chi_{\{|f| > \gamma\}}\|_{\mathcal{M}^p_{q_1,r}} \\ &= \|f\|_{w\mathcal{M}^p_{q_1,r}} \\ &< \infty. \end{aligned}$$

Taking supremum over all $\gamma > 0$, we have

$$\sup_{\gamma>0} \|\gamma \chi_{\{|f|>\gamma\}}\|_{\mathcal{M}^{p}_{q_{2},r}} = ||f||_{w\mathcal{M}^{p}_{q_{2},r}} < \infty.$$

Hence, $w\mathcal{M}_{q_1,r}^p \subseteq w\mathcal{M}_{q_1,r}^p$.

In Lemma 3.2, we obtain the inclusion $\mathcal{M}_{q,r}^p \subseteq w \mathcal{M}_{q,r}^p$. The following lemma is an inclusion result where the value of parameters q and r varies.

Lemma 3.5. For $1 \le q_1 \le q_2 \le p < r_2 \le r_1 \le \infty$ holds

$$w\mathcal{M}_{q_2,r_2}^p \subseteq \mathcal{M}_{q_1,r_1}^p$$
.

Proof. Let $f \in w\mathcal{M}_{q_2,r}^p$. Then

$$\begin{split} &\int_{Q_{vm}} |f(x)|^{q_1} \, dx \\ = &q_1 \int_0^\infty t^{q_1 - 1} \left| \left\{ x \in Q_{vm} : |f(x)| > t \right\} \right| \, dt \\ \leq &\left| Q_{vm} \right| R^{q_1} + \frac{q_1}{q_2 - q_1} \left| Q_{vm} \right|^{1 - \frac{q_2}{p}} \left[\left| Q_{vm} \right|^{\frac{1}{p} - \frac{1}{q_2}} t \left| \left\{ x \in Q_{vm} : |f(x)| > t \right\} \right| \right]^{q_2} R^{q_1 - q_2}. \end{split}$$

If
$$y_{vm} = \left[|Q_{vm}|^{\frac{1}{p} - \frac{1}{q_2}} t | \{x \in Q_{vm} : |f(x)| > t\}| \right]$$
, we get
$$\int_{Q} |f(x)|^{q_1} dx \le |Q_{vm}| R^{q_1} + \frac{q_1}{q_2 - q_1} |Q_{vm}|^{1 - \frac{q_2}{p}} y_{vm}^{q_2} R^{q_1 - q_2}.$$

By choosing $R = \left(\frac{q_1}{q_2-q_1}\right)^{\frac{1}{q_2}} |Q_{vm}|^{-\frac{1}{p}} y_{vm}$, it can be obtained

$$\int_{Q_{vm}} |f(x)|^{q_1} dx \le 2 \cdot |Q_{vm}|^{1 - \frac{q_1}{p}} \left(\frac{q_1}{q_2 - q_1} \right)^{\frac{q_1}{q_2}} y_{vm}^{q_1}.$$

By taking q_1 -root of both sides and dividing both sides by $|Q_{vm}|^{\frac{1}{q_1}-\frac{1}{p}}$, we get

$$|Q_{vm}|^{\frac{1}{p} - \frac{1}{q_1}} \left(\int_{Q_{vm}} |f(x)|^{q_1} dx \right)^{\frac{1}{q_1}} \le 2^{\frac{1}{q_1}} \cdot \left(\frac{q_1}{q_2 - q_1} \right)^{\frac{1}{q_2}} y_{vm}$$

$$= C \cdot |Q_{vm}|^{\frac{1}{p} - \frac{1}{q_2}} \left(t \left| \left\{ x \in Q_{vm} : |f(x)| > t \right\} \right| \right).$$

Since the above inequality is satisfied for each cube Q_{vm} , we obtain

$$||f||_{\mathcal{M}_{q_{1},r}^{p}} = ||Q_{vm}|^{\frac{1}{p} - \frac{1}{q_{1}}} \left(\int_{Q_{vm}} |f(x)|^{q_{1}} dx \right)^{\frac{1}{q_{1}}} ||_{\ell^{r}}$$

$$\leq C ||Q_{vm}|^{\frac{1}{p} - \frac{1}{q_{2}}} (t |\{x \in Q_{vm} : |f(x)| > t\}|) ||_{\ell^{r}}$$

$$\leq C ||f||_{w\mathcal{M}_{q_{2},r}^{p}}.$$

Therefore, it is proven that $w\mathcal{M}^p_{q_2,r}\subseteq \mathcal{M}^p_{q_1,r}$. Based on the inclusion relationship in the sequence space ℓ^r we obtain $w\mathcal{M}^p_{q_2,r_2}\subseteq \mathcal{M}^p_{q_1,r_1}$ for $r_2\leq r_1$.

The results of inclusion that have been obtained in weak Bourgain-Morrey spaces are similar to the results in weak Morrey spaces. Based on Lemmas 3.3, 3.4, and 3.5, we have the inclusions $\mathcal{M}^p_{q_2,r_2} \subseteq w \mathcal{M}^p_{q_2,r_2} \subseteq \mathcal{M}^p_{q_1,r_1}$ holds for $1 \leq q_1 < q_2 \leq p \leq r_2 \leq r_1 \leq \infty$.

4. Conclusion

In this research, we have some inclusion results of weak Bourgain-Morrey spaces. We introduce the definition of weak Bourgain-Morrey spaces by combining the definition of Bourgain-Morrey spaces in Definition 2.4 and the definition of weak Morrey spaces in Definition 2.1. Similar with inclusion properties of Bourgain-Morrey spaces, we have $w\mathcal{M}_{q,r_1}^p\subseteq w\mathcal{M}_{q,r_2}^p$ for $1\leq q\leq p< r_1\leq r_2\leq \infty$ and $w\mathcal{M}_{q_1,r}^p\subseteq w\mathcal{M}_{q_2,r}^p$ for $1\leq q_2\leq q_1\leq p< r_2\leq r_1\leq \infty$, we got $w\mathcal{M}_{q_2,r_2}^p\subseteq \mathcal{M}_{q_1,r_1}^p$. Based on the results obtained above, we obtain

$$\mathcal{M}_{q_2,r_2}^p \subseteq w \mathcal{M}_{q_2,r_2}^p \subseteq \mathcal{M}_{q_1,r_1}^p.$$

for $1 \le q_1 < q_2 \le p \le r_2 \le r_1 \le \infty$.

5. Acknowledgement

This research is supported by FMIPA-ITB under FMIPA-PPMI-KK 2024 award no. 616AO/IT1.CO2/KU/2024.

References

- [1] H. Gunawan, D. I. Hakim, M. Idris, Proper inclusions of Morrey spaces, *Glas. Mat. Ser.* III **53(73)**, no. 1, (2018) 143–151.
- [2] H. Gunawan, D. I. Hakim, K. M. Limanta, A. A. Masta, Inclusion properties of generalized Morrey spaces, *Math. Nachr.* 290 (2017) 332–340.
- [3] H. Gunawan, D. I. Hakim, E. Nakai, Y. Sawano, On inclusion relation between weak Morrey spaces and Morrey spaces, *Nonlinear Anal.* **168** (2018) 27–31.
- [4] N. Hatano, T. Nogayama, Y. Sawano, D. I. Hakim, Bourgain-Morrey spaces and their applications to boundedness of operators, J. Funct. Anal. 284 (2023), Paper No. 109720, 52 pp.
- [5] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, *Trans. Amer. Math. Soc.* **43** (1938) 126–166.
- [6] Y. Sawano, G. Di Fazio, D. I. Hakim, Morrey Spaces. Introduction and Applications to Integral Operators and PDE's, Monographs and Research Notes in Mathematics, vol. 1, Chapman and Hall CRC Press, Boca Raton, FL, 2020.
- [7] Y. Sawano, H. Tanaka, Morrey spaces for non-doubling measures, *Acta Math. Sinica* **21** (2005), no. 6, 1535–1544.
- [8] M. O. I. P. Tarigan, R. Gunadi, D. I. Hakim, Ifronika, Inclusion of mixed Morrey spaces, Adv. Oper. Theory 8, 16 (2023).