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Abstract The study of the rate of convergence of Kantorovich operator sequences has predominantly

focused on the Lp spaces for 1 < p < ∞, yet the behaviour near L1([0, 1]) remains less understood,
particularly as p approaches 1. To bridge this gap, we investigate the rate of convergence within the

framework of the grand Lebesgue spaces Lp)([0, 1]), which encompass all Lp([0, 1]) spaces for 1 < p < ∞
but remain a subset of L1([0, 1]).

Our approach leverages the intrinsic properties of Lp)([0, 1]) to derive new results on the convergence

rate of Kantorovich operator sequences. Specifically, our objective is to demonstrate that Kantorovich

operators exhibit a significant rate of convergence within this broader context, thereby providing insights
applicable to the boundary behavior as p → 1.

We will then apply these findings to α-Hölder continuous functions to further understand the conver-

gence rate of Kantorovich operator sequences in these settings. This combined approach suggests that

functions with derivatives in Lp)([0, 1]) exhibit specific convergence rates under Kantorovich operators.
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1. Introduction

Kantorovich operators are widely recognized for their utility in approximating func-
tions, particularly because of their applicability to integrable functions. After its intro-
duction by Kantorovich as an extension of Bernstein polynomials, these operators have
proven to be a valuable tool in approximation theory, especially in contexts where con-
tinuity cannot be assumed. Unlike Bernstein polynomials, which are limited to continu-
ous functions, Kantorovich operators can approximate functions within broader function
spaces, such as Lp([0, 1]) spaces, making them a more versatile tool for analysis [7]. Al-
though Kantorovich operators are uniformly bounded for 1 ≤ p ≤ ∞, this sequence of
operators is not convergent for p = ∞ (see [9]).
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The study of the convergence of Kantorovich operators in Lp([0, 1]) spaces, for 1 ≤
p < ∞, has shown that these operators converge back to the function they approximate,
with a rate of convergence that has been extensively analyzed [8]. However, the result
about the rate of convergence of Kantorovich operators on L1([0, 1]) is not clear as the
convergence in Lp([0, 1]) for p > 1. One of the reasons for this lack of property is the
unboundedness of the Hardy-Littlewood maximal operator on L1([0, 1]).

To address these challenges, grand Lebesgue spaces Lp)([0, 1]) provide a useful frame-
work, acting as an intermediate space between Lp([0, 1]) and L1([0, 1]) [6]. These spaces
capture the finer nuances of function behavior near L1([0, 1]) and allow for a more refined
analysis of operator convergence [3]. The use of grand Lebesgue spaces in the study of
Kantorovich operators is particularly advantageous because, although the rate of conver-
gence is generally slower compared to Lp([0, 1]) spaces, the broader scope of functions
included in Lp)([0, 1]) makes this framework essential for understanding convergence near
L1([0, 1]) [1]. We refer the reader to [2] and [10] for uniform boundedness and the con-
vergence of Kantorovich operators on other function spaces.

In this paper, we investigate the rate of convergence of Kantorovich operators within
grand Lebesgue spaces Lp)([0, 1]). Additionally, we explore the implications of these
results for α-Hölder continuous functions, further elucidating the behavior of Kantorovich
operators in these broader spaces. We demonstrate that while the rate of convergence in
Lp)([0, 1]) spaces is slower than in classical Lp([0, 1]) spaces, this trade-off is justified by
the inclusion of a wider class of functions.

2. Preliminaries

In this section, we introduce essential definitions, theorems, and results that form the
foundation for the main results of this paper. First, we define the Kantorovich operators,
which play a central role in approximation theory.

Definition 2.1 (Kantorovich operators [7]). Let n ∈ N and f be an integrable function
on [0, 1]. The Kantorovich operator of order n is defined as

Knf(x) :=
n∑

k=0

(n+ 1)

[∫
In,k

f(t) dt

]
bn,k(x) , x ∈ [0, 1]

where

bn,k(x) :=

(
n
k

)
xk(1− x)n−k

and

In,k :=


[

k
n+1 ,

k+1
n+1

)
, k ̸= n[

k
n+1 ,

k+1
n+1

]
, k = n.

In analyzing the behavior of Kantorovich operators, it is often necessary to consider
the Hardy-Littlewood maximal operator. This operator provides a way to control the size
of a function and is crucial for establishing boundedness properties.
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Definition 2.2 (Hardy-Littlewood Maximal Operator [5]). If f is integrable on [0, 1], the
maximal function of f is defined as

Mf(x) := sup
x∈[a,b]

1

b− a

∫ b

a

|f(y)| dy, x ∈ [0, 1],

where the supremum is taken over all closed intervals in [0, 1] that contain x.

We now introduce the concept of grand Lebesgue spaces, which provide a broader
context for analyzing the behavior of Kantorovich operators near L1([0, 1]).

Definition 2.3 (Grand Lebesgue spaces [6]). The grand Lebesgue space on [0, 1], denoted
by Lp)([0, 1]), for 1 < p < ∞, is the space of all measurable functions f : [0, 1] → R that
satisfy

∥f∥Lp)([0,1]) := sup
0<ε<p−1

(
ε

∫ 1

0

|f(x)|p−ε dx

) 1
p−ε

< ∞.

We recall the following inclusion result.

Theorem 2.4 ([3]). It is known that for 1 < p < ∞, we have

Lp([0, 1]) ⊂ Lp)([0, 1]) ⊂ L1([0, 1]).

The space Lp)([0, 1]) is larger than Lp([0, 1]) but smaller than L1([0, 1]), making it an
intermediate space that encompasses functions that may not belong to Lp([0, 1]) but still
exhibit useful integrability properties.

A key result in approximation theory is the rate of convergence of Kantorovich operator
sequences in Lp([0, 1]) spaces.

Theorem 2.5 ([8]). Let 1 < p < ∞. If f, f ′, f ′′ ∈ Lp([0, 1]), then there exists a constant
C > 0 such that for every n ∈ N,

∥Knf − f∥Lp([0,1]) ≤ C
∥f ′∥Lp([0,1]) + ∥f ′′∥Lp([0,1])

n
.

The concept of α-Hölder continuous functions can be used to further investigate the
rate of convergence of Kantorovich operator sequences.

Definition 2.6 (α-Hölder Continuous Functions). Let 0 < α ≤ 1. The function f :
[0, 1] → R is called an α-Hölder continuous function on [0, 1] if there exists a constant
C ≥ 0 such that

|f(x)− f(y)| ≤ C|x− y|α ,∀x, y ∈ [0, 1].

The seminorm of f is given by

|f |C0,α([0,1]) := sup
x,y∈[0,1]

x̸=y

|f(x)− f(y)|
|x− y|α

.

Next, we present some additional key results in Lp([0, 1]) spaces that will be essential
in extending our analysis to grand Lebesgue spaces.

Theorem 2.7 ([1]). Let 1 < p < ∞ and f ∈ C0,α([0, 1]) with 0 < α ≤ 1. Then, for every
n ∈ N,

∥Knf − f∥Lp([0,1]) ≤
(

1

4n

)α
2

|f |C0,α([0,1]).
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Theorem 2.7 follows from the following lemma by applying it to a function f with
α-Hölder continuity and then integrating it over [0, 1] in the Lp-norm.

Lemma 2.8 ([1]). Suppose 0 < α ≤ 1. For every n ∈ N and x ∈ [0, 1], we have

Kn(| · −x|α)(x) ≤
(

1

4n

)α
2

.

We recall the following embedding between Sobolev spaces and Holder continuous
classes.

Lemma 2.9 ([1]). Let 1 < p < ∞. If f is a function such that f ′ ∈ Lp([0, 1]), then

|f |C0,1−1/p([0,1]) ≤ ∥f ′∥Lp([0,1]).

Therefore, Theorem 2.7 implies the following corollary.

Corollary 2.10 ([1]). Let 1 < p < ∞ and f, f ′ ∈ Lp([0, 1]). Then for every n ∈ N,

∥Knf − f∥Lp([0,1]) ≤
(

1

4n

) 1
2 (1−

1
p )

∥f ′∥Lp([0,1]).

3.Main Results

Building upon the foundations laid in the preliminaries, we now present our main
results.

Theorem 3.1 (Rate of convergence of Kantorovich operator sequences in Lp) spaces).
Let 1 < p < ∞. If f, f ′, f ′′ ∈ Lp)([0, 1]) then there exists a constant C > 0 such that for
every n ∈ N,

∥Knf − f∥Lp)([0,1]) ≤ C
∥f ′∥Lp)([0,1]) + ∥f ′′∥Lp)([0,1])

n
.

Proof. Consider a function f ∈ Lp)([0, 1]) such that f ′, f ′′ ∈ Lp)([0, 1]). Similar to the
proof of Theorem 2.5 as shown in [8], we can get

|Knf(x)− f(x)| ≤ |f ′(x)|
4n

+
11Mf ′′(x)

24n
.

Let 0 < ε < p− 1. Using Minkowski’s inequality and then multiplying both side by ε
1

p−ε ,
we get (

ε

∫ 1

0

|Knf(t)− f(t)|p−ε dt

) 1
p−ε

≤ 1

4n

(
ε

∫ 1

0

|f ′(t)|p−ε dt

) 1
p−ε

+
11

24n

(
ε

∫ 1

0

(Mf ′′(t))p−ε dt

) 1
p−ε

.

Taking the supremum over 0 < ε < p− 1 on both sides, we obtain

∥Knf − f∥Lp)([0,1]) ≤
1

4n
∥f ′∥Lp)([0,1]) +

11

24n
∥Mf ′′∥Lp)([0,1]).

Using Corollary 2.3 in [3], we conclude that

∥Knf − f∥Lp)([0,1]) ≤
C

n
(∥f ′∥Lp)([0,1]) + ∥f ′′∥Lp)([0,1])).



Rate of convergence of Kantorovich operator sequences near L1[0, 1] 31

Theorem 3.2. Let 1 < p < ∞ and 0 < ε0 < p − 1. Define α0 := 1 − 1
p−ε0

. If

f ′ ∈ Lp)([0, 1]), then

|f |C0,α0 ([0,1]) ≤ ε
− 1

p−ε0
0 ∥f ′∥Lp)([0,1]).

Proof. Let 1 < p < ∞ and 0 < ε0 < p − 1. Clearly, 0 < 1 − 1
p−ε0

< 1. Define

α0 := 1 − 1
p−ε0

. Consider any function f such that f ′ ∈ Lp)([0, 1]). Let x, y ∈ [0, 1].

Without loss of generality, assume x < y.
Using Hölder’s inequality, we obtain

|f(x)− f(y)| ≤
∫ y

x

|f ′(t)| dt

≤
(∫ y

x

|f ′(t)|p−ε0 dt

) 1
p−ε0

(∫ y

x

dt

)1− 1
p−ε0

= ε
− 1

p−ε0
0

(
ε0

∫ y

x

|f ′(t)|p−ε0 dt

) 1
p−ε0

(y − x)1−
1

p−ε0 .

Dividing both sides by (y − x)α0 , we get

|f(x)− f(y)|
(y − x)α0

≤ ε
− 1

p−ε0
0

(
ε0

∫ y

x

|f ′(t)|p−ε0 dt

) 1
p−ε0

.

Since x and y are arbitrary points in [0, 1], the previous inequality holds for the α-Hölder
seminorm of f ,

|f |C0,α0 ([0,1]) ≤ ε
− 1

p−ε0
0

(
ε0

∫ y

x

|f ′(t)|p−ε0 dt

) 1
p−ε0

.

Then, since 0 < ε0 < p− 1 and f ′ ∈ Lp)([0, 1]),

|f |C0,α0 ([0,1]) ≤ ε
− 1

p−ε0
0 ∥f ′∥Lp)([0,1]).

Theorem 3.3. Let 1 < p < ∞ and 0 < ε0 < p − 1. If f, f ′ ∈ Lp)([0, 1]), then for every
n ∈ N, we have

∥Knf − f∥Lp)([0,1]) ≤
C

(4n)α0/2
ε
− 1

p−ε0
0 ∥f ′∥Lp)([0,1]),

where α0 := 1− 1
p−ε0

and C = max{1, p− 1}.

Proof. Let 1 < p < ∞ and 0 < ε0 < p − 1. Consider a function f such that f, f ′ ∈
Lp)([0, 1]). Let n ∈ N and x ∈ [0, 1]. Then,

|Knf(x)− f(x)| =

∣∣∣∣∣
n∑

k=0

(n+ 1)

[∫
In,k

f(t) dt

]
bn,k(x)− f(x)

∣∣∣∣∣
≤

n∑
k=0

(n+ 1)

[∫
Ik

|f(t)− f(x)| dt
]
bn,k(x).

Since t, x ∈ [0, 1], it follows that

|f(t)− f(x)| ≤ |f |C0,α0 ([0,1])|t− x|α0 .
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Therefore,

|Knf(x)− f(x)| ≤
n∑

k=0

(n+ 1)

[∫
Ik

|f |C0,α0 ([0,1])|t− x|α0 dt

]
bn,k(x)

=
n∑

k=0

(n+ 1)

[∫
Ik

|t− x|α0 dt

]
bn,k(x) · |f |C0,α0 ([0,1])

= Kn(| · −x|α0)(x) · |f |C0,α0 ([0,1]).

Using Lemma 3.5 on [1] which states that

Kn(| · −x|α0)(x) ≤
(

1

4n

)α0
2

for every n ∈ N and x ∈ [0, 1], we get

|Knf(x)− f(x)| ≤
(

1

4n

)α0
2

|f |C0,α0 ([0,1]).

Taking the Lp)[0, 1] norm from both sides, we obtain

∥Knf − f∥Lp)([0,1]) ≤

∥∥∥∥∥
(

1

4n

)α0
2

|f |C0,α0 ([0,1])

∥∥∥∥∥
Lp)([0,1])

≤
(

1

4n

)α0
2

|f |C0,α0 ([0,1])∥1∥Lp)([0,1]).

According to [4], ∥1∥Lp)([0,1]) = supε ε
1

p−ε ≤ max{1, p−1} then by implementing Theorem
3.2 we can write the previous inequality as

∥Knf − f∥Lp)([0,1]) ≤
C

(4n)α0/2
ε
− 1

p−ε0
0 ∥f ′∥Lp)([0,1]),

where α0 := 1− 1
p−ε0

and C = max{1, p− 1}.

4. Concluding Remarks

From Corollary 2.10 and Theorem 3.3, we know that

∥Knf − f∥Lp([0,1]) = O
(
n− 1

2 (1−
1
p )
)

while

∥Knf − f∥Lp)([0,1]) = O

(
n
− 1

2

(
1− 1

p−ε0

))
.

It is clear that the sequence of Kantorovich operators Knf approaches f at a slower rate
in Lp)([0, 1]) spaces compared to in Lp([0, 1]). However, this slower rate of convergence
comes with a significant advantage: the space Lp)([0, 1]) encompasses a broader class of
functions than Lp([0, 1]). This means that while the convergence is slower, it applies
to a more extensive set of functions, offering a more flexible and general framework for
approximation.
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