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Abstract On sequences spaces, we can choose a Young function that plays a role in determining their
norm structure. In this article, we modify the Young function by replacing its convexity property with
concavity to define the F-norm in these spaces. Furthermore, we explore the properties of the modified
Young function. Additionally, we investigate the completeness of the space, allowing it to be classified as

an F-space (Fréchet space).
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1. Introduction

The concept of a norm serves as a crucial tool for measuring the “size” or “magnitude”
of vectors within a given vector space. Just as we intuitively understand the length of a line
segment in classical Euclidean geometry, a norm extends this idea to more abstract spaces,
providing a consistent way to quantify how large a vector is, regardless of its direction.
Norms play a crucial role in linear algebra and functional analysis, as they provide a way
to measure distances. By providing a way to measure distances, norms enable the study
of convergence, continuity, and functional behavior in both finite and infinite-dimensional
spaces. Their diverse applications across mathematics, physics, computer science, and
engineering make them one of the most important concepts in modern analysis.

Let V' be a real vector space. See in [15, 25] that formally, a norm is a mapping
|| |lv : V — R with the following properties

(1) ||z[ly, > 0, for every € V; ||z||;, = 0 if and only if z =0 € V;
(2) |lax|ly, = || ||z||,,, for every € V and for every scalar o € R;
(3) e +ylly < el + lyll, for every z,y € V.

We have a pair of (V,|| - ||v), which is called a normed space.
In the above, a norm must satisfy several conditions, one of which is absolute ho-
mogeneity ||az|ly = |af - ||z||y for every 2 € V and scalars a. A modification of this
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property, considered “weaker”, was put forward by the French mathematician René Mau-
rice Fréchet, resulting in what is now called the “F-norm” (Fréchet norm). Let V be
a real vector space. A function || - ||py : V — R is called an F-norm if it satisfies the
following four properties

(1) ||z[|py =0, for every x € V, ||z|| zy, = 0 if and only if 2 =0 € V,

(2) |==|| gy = llz|| gy, for every 2 € V. This means that the norm does not depend
on the direction of the vector (flipping the sign does not change the magnitude),

3) e+l py < 2l py + [yl py for every 2,y € V.,

(4) If () is a sequence of scalars converging to «, and (z,) is a sequence in V
such that ||z, — z||py — 0 as n — oo, then we must have ||apz, — az|py — 0
as n — oo.

A pair of (V,||-||rv) is called an F-normed space. The properties (2) and (4) are conditions
serve as a key distinction between an F-norm and a norm. In essence, while normed spaces
require strict proportionality under scalar multiplication, F-normed spaces only require
that this property “holds in the limit for sequences”. Thus, since every norm satisfies
absolute homogeneity exactly, it automatically satisfies this weaker sequential condition
as well. This means that every norm automatically qualifies as an F-norm.

One important property of normed spaces is completeness. It means that if we have
a sequence of vectors that keep getting closer and closer together (we call it a Cauchy
sequence), then there must be a final vector in the space that they all approach. A normed
space that is complete is called a Banach space, named after the Polish mathematician
Stefan Banach. There is also a more general type of space called an F-space (Fréchet
space). This is a complete space like a Banach space, but it doesn’t always use a norm to
measure size, maybe it uses a different kind of distance function (called a metric). So, an
F-normed space is called an F-space if it is complete, that is, if every Cauchy sequence
converges with respect to the F-norm to a point within the space. Several studies on
F-norms can be found in [3, 27, 28].

This paper examines sequence spaces defined using a criterion based on the Young
function, referred to as discrete Orlicz spaces (see [1, 5, 10, 18, 26]). It is well established
that these spaces are normed spaces endowed with the Luxemburg norm, which also
makes them F-normed spaces. In this study, we replace the convexity property of the
Young function with a concave property, introducing what we call the M-Young function
(Young modification). Sequences spaces satisfying the M-Young function criterion are
then equipped with an F-norm, classifying them as F-normed spaces. Our analysis focuses
on the behavior of sequences within these spaces, particularly Cauchy sequences with
respect to the F-norm. We demonstrate that every Cauchy sequence respect to converges
to a limit that remains within the space, thereby confirming the completeness of the
sequences space with the F-norm.

2. Young Functions and Sequences Spaces

Young functions are central to the theory of Orlicz spaces, providing the mathematical
foundation for their structure and fundamental properties. Orlicz spaces were formally
introduced in 1931 [2, 19] by Polish mathematicians Zygmunt Wilhelm Birnbaum and
Wiadystaw Orlicz as a broad generalization of classical Lebesgue spaces. The theory
was further advanced through significant contributions by Malempati Madhusudana Rao
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(see [22, 23]). Additionally, in 1961, Robert Welland investigated the inclusion relations
among Orlicz spaces [30].

In LP spaces, it is known that the function zP can be substituted by a more general
convex function ®, known as an N-function, which leads to the study of the corresponding
Orlicz space. The first thorough analysis of Orlicz spaces, treating ® as an N-function
(Nice Young function), was provided by Krasnoselskii and Rutickii (1961), as referenced
in [14, 16, 20]. Many researchers refer to ®(¢) as an N-Young function due to its excellent
properties that simplify mathematical analysis. However, in this context, we will simply
call it a Young function. Let ®(¢) be a function defined for 0 < ¢ < co. The function ®(t)
is called a Young function if it meets the following criteria

(1) (Convexity) The function ®(t) is convex, meaning that for any 0 < A < 1, the
inequality @Az + (1 — N)y) < A®(z) + (1 — A)P(y) holds for every 0 < z,y < oo,

(2) (Monotonicity) The function is strictly increasing, ®(x) < ®(y) for every x < y,

(3) (Zero at the origin) The function starts at zero, meaning ®(0) = 0,

(4) (Unbounded Growth) The function satisfies ®(¢) - oo as t — oc.

Now, since we are dealing with sequence spaces over the real numbers, we will some-

o0
times use the summation notation ) instead of Y for simplicity. In the study of sequence
k k=1
spaces P for p > 1, where sequences satisfy > |zx [P < 0o, a fundamental function to con-
k

sider is f(t) = P, for 0 < ¢t < co. This function is essential in characterizing the properties
of sequences in ¢P. Specifically, the norm of a sequence x = (z) is given by

[l := (Z Iﬂfklp); :

k

Some researches on p-summable sequence spaces is available in [4, 7, 9, 11-13]. Here, f
ensures that the summation inside the norm is well-defined and appropriately scales each
term according to p. Readers can verify on their own as an exercise that f is a convex
function, strictly increasing, zero at the origin, and exhibits unbounded growth as t — oc.
Since f satisfies all these conditions, it qualifies as a Young function.

Considering ® as a general Young function, we define the set % as the collection of

sequences (xy) satisfying
0% = {(.’Ek)‘ Z(I) <|LLZ|> < OO}7
k

for some A > 0. This set, known as a discrete Orlicz space, forms a vector space. However,
defining a norm on £® presents a challenge because ® is generally not homogeneous, mak-
ing conventional norm definitions inapplicable. To address this, we employ an alternative
approach called the Luxemburg norm, given by

. |k
=inf< A ol — ) <1
lz]|e :=in { >0 ’ gk ( T ,

for every x € £®. Refer to [1, 5, 18, 21, 26] for the verification that | - ||¢ qualifies as a
norm. Consequently, (E‘I’, I| - ||<1>) is recognized as a normed space. Further developments
and generalizations of the discrete Orlicz space are available in [6, 17]. The convexity

property of ® plays a crucial role in proving that || - ||¢ satisfies the triangle inequality.
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The convexity of ® has been discussed in more detail in [3]. Moreover, ({2, || - ||s) as a
Banach space is presented in [10]. As a result, ((*,|| - ||o) also qualifies as an F-space,
since || - ||¢ can be interpreted as an F-norm.

3. M-Young Functions and Sequences Spaces

Now, we modify the Young function by replacing the convexity property with concavity.
This modified function is called the M-Young function, denoted by ®. A similar approach
can also be found in [29, 31]. We will investigate the concave properties of the M-Young
function.

Lemma 3.1. Let ® be an M- Young function. We have
d(w) — B(v) _ P (w) — d(u) _ B(v) — B(u)

w—v - w—1Uu - V—U

for every 0 <u < v < w < oco.
Proof. Since d is a concave function, it satisfies the inequality
d(Au+ (1= Nw) > Ab(u) + (1 — \)d(w)
for every u,w € [0,00) and 0 < A < 1. Setting A = =2 for u < v < w, we obtain

w—u

Y8 (w) + — L (w). (3.1)

w—u w—u

Subtracting @(u) from both sides of (3.1), we derive

1)

(v) =

B(v) = Bu) = —— (B(w) - B(u),
d(v) — D(u) N d(w) — C/I;(u).

Similarly, subtracting ®(w) from both sides of (3.1) gives
~ ~ w—v ,~ ~
P(v) — P > P -
(0) = B(w) 2 2 (B(w) — Blw),
B(w) ~ B(u) _ B(w) - ()
w—u - w—v
As a result, we establish the inequality
B(w) — B(v) _ B(w) — B(u)
w—v w—1u v—u
for every u < v < w. m

By Lemma 3.1, take u = 0, we have a special case

d(w) — d(v) - o (w) . @(0)7

w—v w v

(3.2)

for every 0 < v < w < 0.

The concavity of the M-Young function ensures that as the input value increases,
the function’s growth slows down in a controlled manner. This is reflected in the given
inequalities, which show that the difference quotients, representing the function’s average
rate of change, decrease as we move to larger values.
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The function ® may not have a simple form, which makes it important to analyze and
compare the growth rates of complexity functions. To facilitate these comparisons, we
use Big-O notation, introduced by the German mathematician Paul Bachmann in 1894.
This notation was later popularized by Edmund Landau and is now widely known as
Bachmann-Landau notation or asymptotic notation. It describes how functions behave
as their inputs approach very small or very large values. Since its introduction, Big-O
notation has become a widely adopted tool in algorithm analysis, helping researchers to
precisely characterize and analyze the growth rates of complexity functions [24]. Without
loss of generality, consider two functions f, g : [0,00) — [0, 00) such that

lim f(t) = lim g(t) = 0 and Jim f(t) = lim g(t) = oc.
We say f(t) = O(g(t)) if there exists a constant Cy > 0 such that
lim & = Cl
t—0 g(t)

Alternatively, using a different condition, we say f(t) = O(g(t)) if there exists a constant
C5 > 0 such that
f@t)

dm ey = O

Lemma 3.2. Let ® be an M- Young function. There exists 0 < v < 1 such that
d(t) ~ Ot")
for every t € (0,1).

»ew

D (v)

v 3

Proof. Since ® is an M-Young function, then we have (3 (3.2). So the condition ( ) <
B(v

for every v < w, implies that the function h(v) := is non-increasing. Now setting
w = 1, we obtain ®(1)v < ®(v), for every v € (0,1]. Since ® is an increasing and not a
®(t) decays more slowly than ¢.
s 3 s : (1)
(1)t < P(t) < ®(1) or t<P(t)<1l with P(t):= E

constant function, then see the following that

A

for every t € (0,1). Apply a logarithm to convert the above into

n(P() _
In(t) —

For hm In( (())) > 0, there exists v € (0, 1] such that

In(P(t)) _

t—0 ln(t)

—In(t) > —In(P(t)) >0 or 0<

In(P(t)) ’y‘ < B, for every 8 € (0,v) and tg >t > 0 (¢ depends on f).

It means that In(t)

This implies that

)

Y8 < P(t) _ (i)) < =8

Therefore, we can conclude that ®(t) ~ O(t7) for every ¢ € (0,1). m

)
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Lemma 3.2 implies that M-Young functions decay at a controlled rate near zero, ensuring
they do not decrease too rapidly. The condition helps maintain useful mathematical
properties, particularly in estimating small values of the function. We provide examples
of M-Young functions that meet this condition, such as (1) ®(¢) = t* with 0 < o < 1 for
every t > 0, and (2) ®(t) = log(1 + t) for every t > 0. Moreover, it can be verified that
log(1 + t) behaves like O(t) for every ¢ € (0,1). These functions illustrate how the given
bound holds, confirming that their rate of decay is controlled within the specified range.

Lemma 3.3. Let ® be an M- Young function. For 0 < v,w < oo, we have
@(v + w) < EI\)(U) + &D(w)

Proof. Suppose d is an M-Young function. Consider the following cases

(1) For v =0 or w = 0. It is clear that the inequality
(v +w) < B(v) + (w)

holds trivially.
(2) For v # 0 and w # 0. We can state v < v +w and w < v + w, so we utilize
inequality (3.2) to obtain

~

d(v) L 2t w) d(w) - d(v + w)
v v4w w T v+w

Consequently, we also have
(v+w)®(v) > v +w), (v+w)P(w) > wb(v + w).
Adding both sides of these inequalities results in
(v +w) (B(v) + B(w)) > (v + w)D(v + w).
Thus, we conclude that ®(v + w) < ®(v) + (w). ]

Notice that Lemma 3.3 is essential as it ensures that the M-Young function ® does not
grow too rapidly when adding two values. This property helps regulate the function’s
behavior when summing over a sequence, preventing uncontrolled growth.

Using d as an M-Young function, we now define the set £® as the collection of sequences

(z) satisfying
. {(sck) ] 38 (a) < oo}.
k

We also define a mapping || - || o5 : SR by
2l pg =D @ (),
i

for every = € ¢®. The next theorem demonstrates that | - || - defines an F-norm on 2.
The proof relies significantly on Lemmas 3.2 and 3.3. In particular, Lemma 3.3 clearly
ensures that ||-|| .5, which measures the size of a sequence, satisfies the triangle inequality.

Theorem 3.4. The mapping || - || .5 on ¢® is an F-norm.

Proof. We will show that || - || .5 satisfies four properties of F-norm.
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(1) (non-negativity) Since ® is an M-Young function, then it is assumed to be
non-negative and satisfies ®(¢) > 0 for all ¢ > 0. Since |zj| is also non-negative,
then each term in the summation is non-negative ®(|zg|) > 0 for every k € N.

Consequently,
2l pg = Z‘I’(ml) >

Now we will show that ||:1c||F(1> =0 if and only if = 0 € (®.
e Suppose that Z@(|xk|) 0. So, each term <I>(|ack|) in the summation
%

must be zero. Since ® is an M-Young function, then D is strictly positive for
every t > 0, meaning that
O(|lzk)) =0 = |xg| =0.

Thus, x; = 0 for for every k € N, implying that x is the zero sequence.
e Conversely, if x = 0, then |z;| = 0 for every k € N, and thus

2] pg =Y @(0) =
k

(2) (symmetry property) By the definition |z| .5 := Z¢(|mk|) now, consider

—x, which means each component of x is replaced with ( x)p = —xy, for every
k € N. We get | — xx| = |zx|. Since ® depends only on the magnitude |zy|, then
O(| —xi|) = <I>(|xk|) Summing over all indices k, we obtain

—zlpg = mem =" 0(jzk]) = 2 5
k

(3) (triangle inequality) Let x,y € (®. We have Iz +ylps = SO (|zk + yrl)-
k

Using the subadditivity property of <f>, we get

Z@ﬂxk +ykl) < Z‘i’(\lﬂ + [yxl)-
k k

Applying Lemma 3.3 for (fJ, we further obtain

S Bl + k) < D B(ak) + > B([uil)-
k k

k

Thus, we conclude ||z + y|| p5 < 2|l p5 + Yl p5-

(4) (convergence of scalar multiplication) Suppose that |a(n) — a| — 0 and
|z(n) — x| pg — 0 as n — oo. Using triangle inequality property, we get
la(n)z(n) — ozl pg = [[(a(n) — a)z(n) + a(z(n) — )| pg

< l(a(n) — a)z(n)lpg + llalz(n) - 2)l g

= [l(a(n) — a)(z(n) — ) + (a(n) — a)z| pg
+ lla(z(n) — )| pg

< [l(a(n) = a)(z(n) = 2)| pg + [I(a(n) — )zl pg

+ ez (n) — )| pg
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Now, choose a sufficiently large ng € N such that for every n > ng, the following
conditions hold for all £ € N
o |a(n) —al <1,
° |mk(n) — l‘k‘ <1,
o |a(n) —af|lzk] < 1,
o |a||lzi(n) — x| < 1.
Using Lemma 3.2, we get
O(la(n) — af|lzx(n) — zk|) ~ |a(n) — af"|zx(n) — zx|”

~ |a(n) — o] ®(Jzx(n) — ),

®(|a(n) — ol [zx]) = |a(n) — a|"|zx["

= |z |
~ Ja(n) — o"[1+ || w»( ,
"\ T e

and
O(|allzr(n) — z4]) = [a ey (n) — 2] = |a] @ (|zk(n) — zx]).
We know that |a(n) — a|” — 0 and [|z(n) — x| z5 — 0 as n — oo, consequently

[(a(n) = a)(z(n) — )| pg = la(n) = a7[[(z(n) — )|l pg = 0,

l(atn) = @)alleg ~latm) = a1+ el sl | =i = ©
le(z(n) = 2)|| g = || [[(x(n) — 2)| pg — 0.
We conclude that ||a(n)z(n) — ax|| 5 — 0 as n — oco.
Thus, || - || 5 is an F-norm. L]

At this stage, we have established that (ﬁ, |-l »5) forms an F-normed space, meaning the

function || - || .5 satisfies the fundamental properties of an F-norm. Further exploration

could focus on its completeness.

4. The Completeness of (63’, I 1 r5)-

An important aspect of an F-normed space is its completeness. The following theorem
states that (¢%,]| - | ) is a complete space.

Theorem 4.1. The space (66, |- l5) is complete.
Proof. In Ea’, let (x(”)) be any Cauchy sequence with respect to || - || .5, where

™ = (x,(cn)> = (a;ﬁ”),xg”),...) .

According to the definition of a Cauchy sequence, for every ¢ > 0, there exists an ng € N
such that for every n,m > ng, it holds that

R R
; Ty Ty x T o <e
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As a result, for every k € N, we have ‘a:,(c") - a:,(cm)’ < ®!(g) = & > 0. This shows that the

sequence (xé")) is Cauchy in R. Since R is complete, then the sequence (9:5@")> converges.

That is, for each k € N, as n — oo, we have

x,(c") — Tk.

Now, define = (z). It remains to show that = € ¢®. Consider a sequence (y(t)), which
is a subsequence of (a:(")), defined by
Y0 = ()

such that ‘x,(cnt) — ack’ < ¢! (2%2%) As a consequence, we have Hx(”f) — $HF‘$ < %, for

some constant C7 > 0. Therefore,

C
<w_<ww <H@L_‘ H(Hn_‘ < &2
Hy 4 ra = Y xF&)—&—y lles =2t
where Cs > 0. We also define the sequence (z(t)) as
t
A =+ 3 - )
j=1
for each k € N. It follows that
t
) . 1
0] <H<% Hu+n_<w’ <H<w . (1- 2 ,
“llpe = 1Y F<§+;y Yol = 1Y F<T>+ 8 9t ) =
Taking the limit as ¢ — oo, we have
(t) < A<H<w H(HDf(ﬁ <Huw Ca <
27 g S Izllpg < |y F$*+;é; y Y s S ||| g T 68 <0

which shows that z(*) and z belong to . Next, observe that

2l pe = l(x = 2) + 2l p3

<z —zlps + 2l pg
< A,mH ’Mﬂn7<ﬁ
_Hx y F<f>Jr J; y y

< Q.

e
o

Hence, it follows that = € .
We now demonstrate that the sequence (z(™) also converges to z. Take n < n¢, then
we observe

Hﬂmfﬂ'A:Wﬂmfy®%wﬁﬂf@HA§Hﬂmsz)
Fo Fo

A+Hy(t) - ;z:‘ .
Fd Fd

Because (z(™) forms a Cauchy sequence and (y®)) converges to z, then it follows that
as n — 00,

Hﬂm_ﬂm

_—0 and Hy(t) —J:H _—0.
Fd Fo
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Consequently, we conclude that

Hm(") — wH _—0,

Fd
which shows that (x(")) indeed converges to x. Finish. [
The above theorem provides a precise statement and proof that (66, |-l 5) is an F-space

under appropriate conditions on P.

We will present several examples of ® as M-Young functions to construct (63), Il lz3)
as F-normed spaces.

(1) Suppose 0 < s < 1 and define ®,(t) := t* for every ¢t > 0. We obtain

lllpe = 2l ps, = > 12kl

k

for every x € ¢£5. The formula || - || p¢= can be viewed as a usual F-norm. Next, we
also have ||ax||pe= = |@|®||x||Fes for every scalar o and = € ¢°. This means that
Il - | Fes is homogeneous of degree s, which makes easy to prove property (4) for
- lpes

(2) Define ®4(t) := In(1 + t) for every ¢ > 0. We obtain

|2l pg, = > (1 + |zxl),
k

and ((a’l, [l pg,) forms an F-normed space. Note that for 0 <t < 1, we have
the Taylor series

In(1+t) = i (71?%1

7,
=7

which gives the inequality
1
St <+t <t.

As a result, by considering the normed space (£, ] - ||,), we define
A:={z |z el suchthat |z]|p <1}
We can form
1
Flzlle < llzllpg, < llzlle

for every z € A. This means there is an equivalence between the F-norm | - || .5,
and || - ||,» on the normalized ¢! space (which contains vectors with a “length”
less than or equal 1). In the normalized case, we have ¢! = (1. The equivalence
mentioned above helps in proving property (4) for || - || 5, -

From the examples presented, the F-normed spaces are also complete spaces. This is
quite straightforward, and readers are encouraged to verify it.
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5. Concluding Remarks

Based on this study, it is possible to continue by examining the inclusion properties
in (¢*, - || 7). if we consider suitable different functions ®. Furthermore, it is plausible

that for arbitrary ®, a quasi-norm can be defined, and its properties could be further
explored.
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