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Abstract Generally, finding a solution to a theoretical mathematical modelling problem is equivalent to 
finding a fixed point for a suitable operator. Accordingly, fixed point theory is therefore very important 
and crucial in many areas, such as mathematics, sciences, and engineering. A very popular and important 
fixed point theory is that formulated by Stefan Banach in 1922. The theory is related to a complete 
normed space and known as the Banach fixed point theory.
Recently there have been numerous generalizations of the Banach fixed point theory. One of them is a fixed 
point theory in modular spaces. In this paper, we will formulate some fixed point theorems in modular 
spaces by using C∗-class functions. The obtained results generalize and improve some results in [21].
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1. Introduction

In a wide range of mathematical modelling problems, finding a solution of real or the-
oretical problem is equivalent to finding a fixed point for a suitable operator or mapping.
Accordingly, a fixed point theory is therefore a very important and crucial in many areas,
such as mathematics, sciences, economics, and engineering. A very popular and impor-
tant fixed point theory is those formulated by Stefan Banach in 1922 [4]. The theory is
related to a complete normed space and known as the Banach fixed point theory [14, 19].
Due to its importance, many researchers then extended and generalized those theory via
some various ways, such as by replacing normed spaces by modular spaces (See for e.g.
[1, 2, 7, 8, 10–13, 15, 20–22]).

The theory of modular spaces was firstly initiated by H. Nakano in 1950 [17]. Initially,
Nakano defined a modular function on an order vector space, that is a vector space
equipped with an order relation such that the order and the vector space structure are
compatible. Later on, the Nakano’s definition was generalized by Orlicz and Musielak in
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1959 by omitting the order structure in the order vector space in the Nakano’s version
[16, 18]. Based on the definition from Orlicz and Musielak, a modular is therefore a
general case of a norm. Modular metric spaces are a natural generalization of classical
modulars over linear spaces like Lebesgue spaces, Orlicz spaces, Musielak-Orlicz spaces,
and many others [5, 6, 9].

Over time, many results in fixed point theory generalize those of Banach for modular
spaces (See for e.g. [1, 2, 7, 8, 10–13, 15, 20–22]). In this paper, we formulate some fixed
point theorems in modular spaces by using C∗-type functions. The results generalize the
theory in [21].

2. Some Basic Notion and and Preliminaries

In this section, we recall some essential definitions and fundamental results [21].
As usual, N and R denote the set of all positive integers and real numbers system,

respectively. The extended real numbers system will be denoted by R∗.
Let X be a linear space over R. A non-negative function ρ : X → R∗ is called a

modular if for every f, g ∈ X the following conditions hold.

(i) ρ(f) = 0 iff f = 0.
(ii) ρ(−f) = ρ(f).
(iii) ρ(αf + βg) ≤ ρ(f) + ρ(g) for every α, β ≥ 0 such that α+ β = 1.

If we change the axiom (iii) by

(iii’) ρ(αf + βg) ≤ αρ(f) + αρ(g) for every α, β ≥ 0 such that α+ β = 1,

then we say that the modular ρ is a convex modular. A linear space X equipped with a
modular ρ, written by (X, ρ), is called a modular space. We shall also denote a modular
space by the single character X, when the modular ρ is explicitly understood.

By considering the definition of the modular, then we can easily prove the following
theorems.

Theorem 2.1. Let (X, ρ) be a modular space.

(i) If α, β ∈ R, 0 ≤ α ≤ β then ρ(αf) ≤ ρ(βf) for every f ∈ X.
(ii) If ρ(f) < ϵ for every ϵ > 0 then f = 0.

Theorem 2.2. Let (X, ρ) be a modular space. If f1, f2, f3, . . . , fn ∈ X, and α1, α2, α3,
. . . , αn are non-negative real numbers such that

∑n
i=1 αi = 1, then ρ(

∑n
i=1 αifi) ≤∑n

i=1 ρ(fi).

Theorem 2.3. Let (X, ρ) be a modular space. If the modular ρ is convex, then for any
f1, f2, f3, . . . , fn ∈ X and any non-negative real numbers α1, α2, α3, . . . , αn satisfying∑n

i=1 αi = 1 we have ρ(
∑n

i=1 αifi) =
∑n

i=1 αiρ(fi).

Definition 2.4. The modular function ρ on Xρ is said to satisfy the ∆2−condition if
there exists K > 0 such that ρ(2x) ≤ Kρ(x) for any x ∈ Xρ.

Throughout this paper, we assume that the modular ρ is always convex and satisfying
the ∆2−condition, unless otherwise stated.

Let (X, ρ) be a modular space. We can show that the set

Xρ = {f ∈ X : ρ(f) <∞} (2.1)
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is a linear space, modulared by ρ. It can be also verified that ρ(f) <∞ for every f ∈ Xρ.
In this paper, we always mean that the modular space Xρ is as given in (2.1).

Let (X, ρ) be a modular space. A sequence
(
f (n)

)
in Xρ is said to be ρ-convergent

(modular convergent) to f ∈ Xρ if for every real number ϵ > 0 there exists a positive
integer N such that for every n ≥ N , we have:

ρ
(
f (n) − f

)
< ϵ.

In this case, f is called a modular limit (ρ-limit) of
(
f (n)

)
, and we write

ρ - lim
n→∞

f (n) = f.

If the sequence
(
f (n)

)
in Xρ is ρ-convergent, then its ρ-limit is unique. A sequence

(
f (n)

)
in Xρ is called a ρ-Cauchy (modular Cauchy) sequence if for every real number ϵ > 0
there exists a positive integer N such that for every m,n ≥ N , we have:

ρ
(
f (n) − f (m)

)
< ϵ.

It is easy to check that in every modular space, every ρ-convergent sequence is ρ-Cauchy
sequence. The modular space Xρ is said to be ρ-complete if every ρ-Cauchy sequence in
Xρ is ρ-convergent.

Definition 2.5. Any set E ⊂ Xρ is said to be modular close (ρ-closed) if for any sequence
(fn) in E which is ρ-convergent to f ∈ Xρ implies f ∈ E.

Definition 2.6. Any set B ⊂ Xρ is said to be modular bounded (ρ-bounded) if there
exists an M > 0 such that ρ(f − g) < M for every f, g ∈ Xρ. It is equivalent to say that
B ⊂ Xρ is modular bounded iff sup{ρ(f − g) : f, g ∈ B} <∞.

In 2014, A.H. Ansari [3] proved the existence of C-class functions that cover a large
class of contractive conditions. We revise the definition of A.H. Ansari to get the more
general one, as given in the following definition.

Definition 2.7. A function f : [0,∞)× [0,∞) → R is said to be C∗-type , if the following
conditions hold.

(i) If (sn) and (tn) are any convergent sequences in [0,∞), then lim f(sn, tn) =
f(lim sn, lim tn).

(ii) f(s, t) ≤ s for any s, t ∈ [0,∞).
(iii) If f(s, t) = s, then s = 0 or t = 0.

It is clear that condition (ii) in Definition 2.7 implies f(0, 0) = 0. We can also see that
any C-class function is of C∗-type.

Example 2.8. A function f(s, t) = s − t, s, t ∈ [0,∞), is C∗-type. However, a function
g(s, t) = s+ t, s, t ∈ [0,∞), is not C∗-type.

3. Some Fixed Point Theorems Characterized by C∗-Type Func-
tions

The collection of all continuous functions φ : [0,∞) → [0,∞) such that φ(t) > 0 for
every t > 0 and φ(0) ≥ 0 will be denoted by C+[0,∞). For any operators S, T : X → X,
a product ST is meant as a composition of T and S, i.e.

(ST )(f) = S(T (f)),
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for any f ∈ X. Further, we will present some results related to fixed points, which
are formulated using a function of C∗-type. The first one is formulated in the following
theorem.

Theorem 3.1. Let (Xρ, ρ) be a ρ-complete modular space and B ⊂ Xρ be a ρ-closed and
ρ-bounded set. If S, T : B → B are operators satisfying ST = TS, F is a function of
C∗-type, and φ ∈ C+[0,∞), such that

ρ (T (f)− T (g)) ≤ F (ρ(S(f)− S(g)), φ(ρ(S(f)− S(g)))) (3.1)

for every f, g ∈ B, then S and T have a unique common fixed point.

Proof. Let f0 ∈ B. For any integer n ≥ 0, we define

S(fn+1) = T (fn).

Let α0 = ρ(S(f0)) and αn+1 = ρ(S(fn+1)− S(fn)) for every n ∈ N ∪ {0}. Since, F is
C∗-type, then for any n ∈ N, we have

αn+1 = ρ(T (fn)− T (fn−1))

≤ F (ρ(S(fn)− S(fn−1)), φ(ρ(S(fn)− S(fn−1))))

≤ ρ(S(fn)− S(fn−1)) = αn

This implies that the sequence (αn) converges to some r ≥ 0. Hence,

r = F (r, φ(r)).

Following the assumption of F , then r = 0 or φ(r) = 0 , which yields r = 0 or

lim
n→∞

ρ(S(fn+1)− S(fn)) = 0. (3.2)

The next step, we will show that (T (fn)) is a ρ-Cauchy sequence. By assuming the
contrary and by noticing equation (3.2), then there exists ε > 0 such that we can find
two sequences (mk) and (nk) of positive integers satisfying nk > mk ≥ k such that

ρ (T (fnk
)− T (fmk

)) ≥ ε and ρ (2(T (fnk−1)− T (fmk
))) < ε. (3.3)

Following (3.3) and Theorem 2.2, then we have

ε ≤ ρ (T (fnk
)− T (fmk

))
≤ ρ (2(T (fnk

)− T (fnk−1))) + ρ (2(T (fnk−1)− T (fmk
)))

< ρ (2(T (fnk
)− T (fnk−1))) + ε.

(3.4)

So, by taking the limit as k → ∞ for each side of (3.4), we obtain that

lim
k→∞

ρ (T (fnk
)− T (fmk

)) = ε. (3.5)

Take f = fnk
and g = fmk−1, then from (3.1) we get

ρ(T (fnk
)− T (fmk

)) ≤ F (ρ(S(fnk
)− S(fmk

)), φ (ρ(S(fnk
)− S(fmk

))))
≤ F (ρ(T (fnk−1)− T (fmk−1)), φ (ρ(T (fnk−1)− T (fmk−1)))) .

(3.6)

Hence, by taking the limit as k → ∞ on each side of (3.6) and following (3.5) and
Definition 2.7, we get

ε ≤ F (ε, φ (ε)).

This contradicts to the assumption that F is a C∗-type function. Thus, (T (fn)) is a ρ-
Cauchy sequence. Following the definition of S(fn), then (S(fn)) is a ρ-Cauchy sequence
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as well. Furthermore, following the ρ-completeness of Xρ, then (S(fn)) and (T (fn)) are
ρ-convergent in Xρ, and by considering the construction of (fn), then we have

lim
n→∞

T (fn) = lim
n→∞

S(fn) = g

for some g ∈ Xρ. Since, B is ρ-closed, then g ∈ B. As the consequence, there exists an
f ∈ B such that

T (f) = g = S(f). (3.7)

Since ST = TS, then (3.7) implies that T (T (f)) = S(S(f)). Furthermore,

ρ
(
T (f)− T 2(f)

)
≤ F (ρ(S(f)− S(S(f))), φ(ρ(S(f)− S(S(f)))))

= F
(
ρ(T (f)− T 2(f)), φ(ρ(T (f)− T 2(f)))

)
.

So, ρ
(
T (f)− T 2(f)

)
= 0 or φ

(
ρ(T (f)− T 2(f))

)
= 0, which yields ρ

(
T (f)− T 2(f)

)
= 0.

This implies

T (f) = T (T (f)) = S(T (f))

i.e. T (f) = g ∈ B is a common fixed point of T and S. The uniqueness of the fixed point
follows from the convexity of the modular ρ.

Theorem 3.2. Let (Xρ, ρ) be a ρ-complete modular space and B ⊂ Xρ be a ρ-closed and
ρ-bounded set. If operators S, T : B → B satisfy ST = TS, φ ∈ C+[0,∞), and F is a
function of C∗-type, such that

ρ(2(T (f)− T (g))) ≤ 2F (ρ(S(f)− S(g)), φ(ρ(S(f)− S(g)))) (3.8)

for every f, g ∈ B, then S and T have a unique common fixed point.

Proof. Let f0 ∈ B. For any integer n ≥ 0, we define

S(fn+1) = T (fn)

Let α0 = ρ(S(f0)) and αn+1 = ρ(S(fn+1) − S(fn)) for every n ∈ N ∪ {0}. Since ρ is
convex, then for any n ∈ N, we have

αn+1 ≤ 1

2
ρ(2(T (fn)− T (fn−1))).

So, by following the hypothesis, we obtain

αn+1 ≤ F (ρ(S(fn)− S(fn−1)), φ(ρ(S(fn)− S(fn−1))))

≤ ρ(S(fn)− S(fn−1)) = ρ(T (fn−1)− T (fn−2)) = αn. (3.9)

This implies αn → r for some r ≥ 0 . So, by letting n −→ ∞ for (3.9), we obtain

r = F (r, φ(r)).

Since F is C∗-type, then r = 0 or φ(r) = 0, which yields r = 0 or

lim
n→∞

ρ(S(fn+1)− S(fn)) = 0 (3.10)

Next, we will prove that (T (fn)) is a ρ-Cauchy sequence. Assume on the contrary. By
noticing (3.10), then there exists ε > 0 such that we can find two sequences (mk) and
(nk) of positive integers satisfying nk > mk ≥ k such that the following inequalities hold.

ρ (T (fnk
)− T (fmk

)) ≥ ε and ρ (2(T (fnk−1)− T (fmk
))) < ε. (3.11)
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Following (3.11) and Theorem 2.2, then we have

ε ≤ ρ (T (fnk
)− T (fmk

))
= ρ (T (fnk

)− T (fnk−1) + T (fnk−1)− T (fmk
))

≤ ρ (2(T (fnk
)− T (fnk−1))) + ρ (2(T (fnk−1)− T (fmk

)))
< ε+Mρ (T (fnk

)− T (fnk−1)),

for some M > 0. So, by taking the limit as k → ∞, we obtain that

lim
k→∞

ρ (T (fnk
)− T (fmk

)) = ε

Further, take f = fnk
and g = fmk−1 in (3.8), then we have

ρ(T (fnk
)− T (fmk

)) ≤ 1

2
ρ(2(T (fnk

)− T (fmk
)))

≤ F (ρ(S(fnk
)− S(fmk

)), φ (ρ(S(fnk
)− S(fmk

))))
= F (ρ(T (fnk−1)− T (fmk−1)), φ (ρ(T (fnk−1)− T (fmk−1))))

(3.12)

By taking the limit as k → ∞ on each side of (3.12) and by using (3.10) and Definition
2.7, we get

ε ≤ F (ε, φ (ε)).

This contradicts to the assumption of F . Thus, (T (fn)) is a ρ-Cauchy sequence. As a
consequence, (S(fn)) is also a ρ-Cauchy sequence. Hence, because of the ρ-completeness of
Xρ, then (S(fn)) and (T (fn)) are ρ-convergent inXρ. And by considering the construction
of (fn), then we have

lim
n→∞

T (fn) = lim
n→∞

S(fn) = g

for some g ∈ Xρ. Since, B is ρ-closed, then g ∈ B. Further, there exists an f ∈ B such
that

T (f) = g = S(f).

And since ST = TS, then T (T (f)) = S(S(f)). Furthermore,

ρ
(
T (f)− T 2(f)

)
≤ 1

2
ρ(2(T (f)− T 2(f)))

≤ F (ρ(S(f)− S(S(f))), φ(ρ(S(f)− S(S(f))))

= F
(
ρ(T (f)− T 2(f)), φ(ρ(T (f)− T 2(f)))

)
.

Therefore, by the hypothesis,

ρ
(
T (f)− T 2(f)

)
= 0 or φ

(
ρ(T (f)− T 2(f))

)
= 0,

which yields ρ
(
T (f)− T 2(f)

)
= 0. So, we have

T (f) = T (T (f)) = S(T (f)),

i.e. T (f) = g ∈ B is a common fixed point of T and S. The uniqueness of T (f) follows
from the convexity of the modular ρ.

Following the Theorem 3.1 and Theorem 3.2, we have the following corollaries.



20 Hilbert J. Math. Anal. Vol. 1-1 (2022) /Supama.

Corollary 3.3. [21] Let (Xρ, ρ) be a ρ-complete modulared space, where the modular ρ
is convex, B ⊂ Xρ ρ-closed and ρ-bounded set. If the operators S, T : B → B satisfying
ST = TS and

ρ(T (f)− T (g)) ≤ kρ(S(f)− S(g))

for every f, g ∈ B and for some k ∈ (0, 1), then S and T have a unique common fixed
point.

Proof. By taking F (s, t) = ks, k ∈ (0, 1) in Theorem 3.1, then the assertion follows.

Corollary 3.4. [21] Let (Xρ, ρ) be a ρ-complete modulared space, where the modular ρ
is convex, B ⊂ Xρ ρ-closed and ρ-bounded set . If operators S, T : B → B satisfying
ST = TS and

ρ(2(T (f)− T (g))) ≤ kρ(S(f)− S(g))

for every f, g ∈ B and for some k ∈ (0, 2), then S and T have a unique common fixed
point.

Proof. Take F (s, t) = ks, k ∈ (0, 1) in Theorem 3.2, then the assertion follows.

Corollary 3.5. [21] Let (Xρ, ρ) be a ρ-complete modulared space, where the modular ρ is
convex, B ⊂ Xρ ρ-closed and ρ-bounded set, and ϕ ∈ C+[0,∞). If operators S, T : B → B
satisfying ST = TS and

ρ(T (f)− T (g)) ≤ ϕ(ρ(S(f)− S(g)))

for every f, g ∈ B , then S and T have a unique common fixed point..

Proof. Apply Theorem 3.1 by choosing F (s, t) = ϕ(s), where ϕ ∈ C+[0,∞), then the
assertion follows.

Corollary 3.6. Let (Xρ, ρ) be a ρ-complete modulared space, where the modular ρ is
convex, B ⊂ Xρ ρ-closed and ρ-bounded set, and ϕ ∈ C+[0,∞). If operators S, T : B → B
satisfying ST = TS and

ρ(2(T (f)− T (g))) ≤ 2ϕ(ρ(S(f)− S(g)))

for every f, g ∈ B , then S and T have a unique common fixed point.

Proof. Take F (s, t) = ϕ(s), where ϕ ∈ C+[0,∞) and apply Theorem 3.2, then the asser-
tion follows.

4. Concluding Remarks

Some fixed point theorems in modular spaces have been able to be formulated by using
C∗-type functions. The results generalize the theorems in [21].
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