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Abstract The linear canonical transform is an extension of the usual Fourier transform because the

Fourier transform is a special form of the linear canonical transform. It is also a valuable tool in signal

analysis. Many essential properties of the Fourier transform can be transferred to the linear canonical

Fourier domain with some changes. In this research paper, we first introduce the interesting connection

between the linear canonical transform and the Fourier transform. It is shown that the relation can be

developed to efficiently evaluate the Gaussian function in the linear canonical transform domain. Some

examples of the Gaussian function in the linear canonical domain are also presented to illustrate the

result.
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1. Introduction

As is known to all, the linear canonical transform (LCT) is the linear integral transfor-
mation that has a quadratic-phase kernel. That is why the linear canonical transform is
usually called as the quadratic-phase transformation. In the recent ten years, a detailed
discussion of the main properties of the linear canonical transform, such as translation,
dilation, uncertainty principles, and the convolution theorem, has been investigated in
[1–3, 5, 13].

On the flip side, many famous transformations like the classical Fourier transform
and fractional Fourier transform, Laplace transform, chirp multiplication, and Fresnel
transformation are particular cases of the LCT. Compared with the fractional Fourier
transform with three degrees of freedom and the classical Fourier transform without a
parameter, the LCT is more flexible due to its extra parameter. Some important applica-
tions of this extended transformation in the fields of optics, filter design, signal analysis,
time-frequency analysis, encryption, modulation, and multiplexing in communications
have been demonstrated (see [6–12, 14] and elsewhere).
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In this research paper, we consider the direct connection between the linear canonical
transform and the Fourier transform. It is shown that the relation can be developed to
efficiently evaluate the Gaussian function in the linear canonical transform domain. Some
examples of the Gaussian function in the linear canonical domain are also presented to
illustrate the result.

2. Definition of Linear Canonical Transform

In this section, we introduce the definition of the linear canonical transform (LCT)
and its inverse.

Definition 2.1. The definition of the LCT with matrix parameter B =

[
a b
c d

]
∈ R2×2

for which det(B) = ad− bc = 1 and f(t) ∈ L2(R) is expressed as

LB{f(t)}(ω) =

{∫∞
−∞ f(t)KB(ω, t)dt b ̸= 0,√
de

i
2 cdω

2

f
(
dω
)

b = 0.
(2.1)

where KB(ω, t) is the LCT kernel given as

KB(ω, t) =
1√
2πb

e
i
2

(
a
b t

2− 2
b tω+ d

bω
2−π

2

)
.

Without loss of generality, in relation (2.1) we always consider b ̸= 0 throughout the
article. Further, the signal f(t) can be recovered using the inversion formula for the LCT
as follows.

Theorem 2.2. For every f(t) ∈ L1(R) with LB{f(t)} ∈ L1(R), the inverse formula of
the LCT is described through

f(t) =

∫ ∞

−∞
LB{f(t)}(ω)KB(ω, t)dω

=

∫ ∞

−∞
LB{f(t)}(ω)

1√
2πb

e−
i
2

(
a
b t

2− 2
b tω+ d

bω
2−π

2

)
dω

where KB(ω, t) represents the conjugation of KB(ω, t).

3. Linear Canonical Transform and its Relation to Fourier Trans-
form

In this segment, we mainly show that we can evaluate the Gaussian signal in the linear
canonical transform domain by expounding on the direct relationship between the Fourier
transform and the linear canonical transform. For this, we provide the following definition
(see [4]).

Definition 3.1. The Fourier transform of f ∈ L2(R), is the function defined by the
integral form

F{f}(ω) =
∫ ∞

−∞
f(t)e−iωtdt. (3.1)
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By exploiting equation (2.1), the linear canonical transform definition can be reduced
to the Fourier transform definition, that is,

LB{f(t)}(ω) =
∫ ∞

−∞
f(t)
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i
2

(
a
b t

2− 2
b tω
)
dt

=
1√
2πb

e
i
2

(
d
bω

2−π
2

)
F{h}

(ω
b

)
. (3.2)

This is equivalent to

F{h}
(ω
b

)
=

√
2πbe−

i
2

(
d
bω

2−π
2

)
LB{f(t)}(ω),

where h(t) = f(t)e
ia
2b t

2

.
The above relation allows us to evaluate the Gaussian signal in the linear canonical Fourier
domain. Given the Gaussian function in the following form:

f(t) = e−kt2 with k > 0,

as shown in Figure 1.
From the Fourier transform in the Definition 3.1, it follows that

F{h}
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)
= F
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Now putting

α =
2bk − ia

2b
, y = t+

iω

2bk − ia
, (3.3)
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then, we get

F{h}
(ω
b

)
= e−

ω2

2b(2bk−ia)

∫ ∞
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e−αy2

dy.

Hence,
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(ω
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ω2

2b(2bk−ia)

√
π

α
. (3.4)

Substituting the first term of relation (3.3) into relation (3.4), one could easily obtain

F{h}
(ω
b

)
= e−
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2b(2bk−ia)

√
2πb
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.

It follows from relation (3.2) that
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=
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e
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4 .

As a special case, when the matrix parameter B =

[
0 1
−1 0

]
we immediately obtain

LB{f}(ω) =
1√
2πi

√
π

k
e−

ω2

4k ,

which shows the above equation is consistent with the Gaussian function in the Fourier
transform domain. Figures 2(a) and 2(b) illustrate the Gaussian signal in the linear
canonical Fourier domain under the different matrix parameters.

Further, let us evaluate the norm (modulus) of the Gaussian signal in the linear canon-
ical transform domain. In fact, we have

|LB{f}(ω)| =
∣∣∣∣ 1√

2bk − ia
e

ω2

2 ( c+2dik
2bk−ia )−iπ

4

∣∣∣∣
=

∣∣∣∣ 1√
2bk − ia

∣∣∣∣ ∣∣∣eω2
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2bk−ia )−iπ

4

∣∣∣ . (3.5)
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Now observe that∣∣∣∣ 1√
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On the other hand, we find that
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Therefore, we finally get

|LB{f}(ω)| = (4b2k2 + a2)−
1
4 e

ω2

2
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=
1
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(
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as shown Figures 2(a) and 2(b).

If we take the matrix parameter B =

[
0 1
−1 0

]
, then we easily get

|LB{f}(ω)| =
1√
2k

e−
ω2

4k ,

which shows the above equation is consistent with the norm (modulus) of the Gaussian
function in the Fourier transform domain. Figures 3(a) and 3(b) illustrate the norm
(modulus) of the Gaussian signal in the linear canonical Fourier domain.
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Figure 1. Gaussian function for k = 4.

Finally, we apply the above relation to evaluate the following function in the linear canon-
ical Fourier domain. Given the function in the following form:

f(t) =

{
1, −1 ≤ t ≤ 1

0, t elsewhere.

In fact, we have

F{h}(ω) =
∫ ∞

−∞
h(t)e−iωtdt

=

∫ ∞

−∞
f(t)e
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2b t

2
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=
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2
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e
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2
)
dt.

Letting u = t− b
aω, we further obtain

F{h}(ω)

= e−
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e
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(√
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a
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(√
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.
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(a) Gaussian function in LCT domain for

k = 4 and B =

[
5 2
7 3

]
.

(b) Gaussian function in LCT domain for

k = 4 and B =

[
−3 −2
5 3

]
.

Figure 2. Gaussian functions in the LCT domain for two different ma-
trices B and fixed k = 4.

(a) (b)

Figure 3. The norms of the Gaussian functions in the LCT domain for

two different matrices for 3(a) B =

[
5 2
7 3

]
and 3(b) B =

[
−3 −2
5 3

]
fixed k = 4.

Therefore,
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)))
.
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With the help of equation (3.2), we arrive at

LB{f}(ω)

=
1√
2πb

e
i
2

(
d
bω

2−π
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)
e
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(
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(√
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−
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(√
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(
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a
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=

√
2

π
e

i
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d
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(√
ia
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(
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a
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(√
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a
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,

where

erf(z) =
2√
π

∫ z

0

e−t2dt.

4. Conclusion

In this paper, we introduced the linear canonical transform and its basic relationship
to the traditional Fourier transform. We utilized the relations to compute the Gaussian
function in the linear canonical transform. In future work, we shall apply the relation to
compute other functions in the linear canonical transform domains.
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