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1. Introduction

Throughout this paper, we consider ⟨., .⟩ to be an inner product and ∥.∥ as its cor-
responding norm. Let Hi, i = 1, 2, be Hilbert spaces, Ci, i = 1, 2, 3, ..., p and Qj , j =
1, 2, 3, ..., r be nonempty, closed, and convex subsets of H1 and H2 , respectively.

The convex feasibility problem (CFP) is obtained as finding a vector x∗ ∈ H1 satisfying:

x∗ ∈
p⋂

i=1

Ci. (1.1)

This problem had intensively being studied by a number of authors due to its various
applications in real life problems, such as in approximation theorem, image recovery,
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signal processing, control theory, biomedical engineering, communication, and geophysics,
see[4, 13, 24]. As a generalization of CFP, we have multiple-set split feasibility problem
(MSSFP). This is formulated as finding a vector x∗ ∈ H1 with the property:

x∗ ∈
p⋂

i=1

Ci such that Ax∗ ∈
r⋂

j=1

Qj , (1.2)

where A is a bounded and linear mapping. Set p = r = 1, we have

x∗ ∈ C such that Ax∗ ∈ Q. (1.3)

Equation (1.3) is known as the split feasibility problem (SFP), see Censor and Segal [12].
Since every nonempty, closed, and convex subset of a Hilbert space is a fixed point of

its associating projection, then Equations (1.1) and (1.2) give

x∗ ∈
p⋂

i=1

Fix(Ui), (1.4)

and

x∗ ∈
p⋂

i=1

Fix(Ui) such that Ax∗ ∈
r⋂

j=1

Fix(Tj). (1.5)

where Ui : H1 → H1 (i = 1, 2, 3, . . . , p) and Tj : H2 → H2 (j = 1, 2, 3, . . . , r) are some
nonlinear operators.

Equations (1.4) and (1.5) are called “common fixed point problem (CFPP) and split
common fixed point problem (SCFPP)”, respectively,

Set p = r = 1, Equation (1.5) reduces to

x∗ ∈ Fix(U) such that Ax∗ ∈ Fix(T ). (1.6)

This is called a two-set SCFPP.

1.1. Split Feasibility Problem (SFP)

The idea of SFP was established in 1994 by Censor and Elfving [9]. The SFP at-
tracts the attention of many researchers due to its various applications in many physical
problems, such as in intensity modulation radiation therapy, signal processing, and image
reconstruction, see [4, 13, 24]. Subsequently, a number of iterative methods for solving
SFP for many nonlinear mappings in Hilbert spaces were established, for more details, see
[7, 8, 10, 19, 25, 26]. It is well-known that to solve SFP, the computation of the inverse
of a bounded linear operator is necessary, this was why Byne [7], considered an algorithm
for solving such a problem that does not include the inverse of a bounded linear operator.
Similarly, in 2002, Byne [7], also introduced another algorithm known as CQ-algorithm
for solving SFP and obtained a weak convergence result. To solve the CQ-algorithm, the
computation of metric projections on C and Q are necessary, and this is not an easy task
in practice. More results on CQ-algorithm for solving SFP can be found in [14, 22, 23].
It is well-known that SFP can be reduced to convex feasibility problem (CFP) as well as
fixed point problem, see Mohammed and Kılıçman [20].
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1.2. Multiple-Sets Split Feasibility Problem

The multiple-sets split feasibility problem (in short, MSSFP) can be used as a model
for many inverse problems where constraints are imposed on the solutions in the domain
of a linear operator as well as in the operator’s range. The MSSFP generalizes the convex
feasibility problem and split feasibility problem as can be found in [20]. The MSSFP
arises in the field of intensity-modulated radiation therapy (in short, IMRT) when one
attempts to describe physical dose constraints and equivalent uniform dose (EUD) within
a single model, see Censor et al [11]. The IMRT is an advanced mode of high-precision
radiotherapy that uses computer-controlled linear accelerators to deliver precise radiation
doses to specific areas within a tumor.

The IMRT allows for the radiation doses to confirm the three-dimensional (3D) shape
of the tumor more precisely by modulating or controlling the intensity of the radiation
beam in multiple small volumes. It also allows higher radiation doses to be focused on
regions within the tumor while minimizing the dose to surrounding normal critical on
structures. Treatment is carefully planned by using 3D computed tomograpy (CT) or
magnetic resonance images of the patient in conjunction with computerized dose calcu-
lations to determine the dose intensity pattern that will confirm the tumor shape best.
Typically, combinations of multiple intensity-modulated field coming from different beam
directions produce a customized radiation dose that maximizes the dose to the targeted
tumor while minimizing the dose to adjacent normal tissues. The ratio of normal tissue
dose to tumor dose is reduced to a minimum with the IMRT approach. Higher and more
effective radiation doses can safely be delivered to tumor with fewer side effects compared
with conventional radiotherapy techniques. The IMRT also has the potential to reduce
treatment toxicity, even when doses are not increased. Radiation therapy, including IMRT
stops cancer cells from dividing and growing, thus, it is slowing or stopping tumor growth.
In many cases, radiation therapy is capable of killing all of the cancer cells, thus shrinks
or eliminates tumors, for more details, see Ansari and Rehann [2].

1.3. Split Common Fixed Point Problem (SCFPP)

The idea of the SCFPP was developed in 2009 by Censor and Segal (see [12]) and it
entails finding a vector of the family of an operator in one space such that its image under
a bounded linear operator is a common fixed point of another family of an operator in the
image space. The SCFPP generalizes the convex feasibility problem (CFP), the multiple-
set split feasibility problem (MSSFP), and the split feasibility problem (SFP), for more
details, see [20] and the reference therein. Censo and Segal (see [12]), had considered the
following algorithm:

xn+1 := U
(
xn + γA∗(T − I

)
Axn

)
,∀n ≥ 0, (1.7)

where the initial guess x0 ∈ H is chosen arbitrarily and 0 < γ < 2
∥A∥2 , T and S are

demicontractive mappings. Based on the work of Censor and Segal (see [12]), Moudafi [21]
had studied the convergence properties of relaxed algorithm for solving the SCFPP for a
class of quasi-nonexpansive operator T such that (I−T ) is demiclosed at zero and obtained
a weak convergence result. Note that, in finite-dimensional Hilbert space, weak and strong
convergence are equivalent. It is different in an infinite dimensional space, that is, they
are not the same. Moudafi’s results guarantee only a weak convergence result. Based on
this, Mohammed [17, 18] utilized the strongly quasi nonexpansive operators and quasi
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nonexpansive operators to solve Moudafi’s algorithm and obtained strong convergence
results.

Kraikaew and Saejung [15] also modified the Moudafi’s algorithm [21] and obtained a
strong convergence result as stated below.

Theorem 1.1. (Kraikaew and Saejung [15]) let U : H1 → H1 be a strongly quasi-
nonexpansive operator and T : H2 → H2 be a quasi-nonexpansive operator such that both
(I − U) and (I − T ) are demiclosedness at zero. Let A : H1 → H2 be a bounded linear
operator with L = ∥AA∗∥. Suppose that Γ ̸= ∅. Let {xn} ⊂ H1 be a sequence generated
by {

x0 ∈ H,
xn+1 = αnx0 + (1− αn)U(xn + γA∗(T − I)Axn),

(1.8)

where the parameter γ and {αn} satisfy the following conditions:

(a) γ ∈ (0, 1
L );

(b) {αn} ⊂ (0, 1), limn→∞ αn = 0 and
∑

αn = ∞. Then xn → PΓ x0 .

One of important classes of nonlinear mappings is the class of strictly pseudocontractive
mapping. This mapping is defined as

∥Tx− Ty∥2 ≤ ∥x− y∥2
+ k ∥(I − T )x− (I − T )y∥2

,∀x, y ∈ H1 , (1.9)

where T : H1 → H1 , and k ∈ [0, 1). If k = 0, Equation (1.9) reduces to

∥Tx− Ty∥ ≤ ∥x− y∥ . (1.10)

This is known as nonexpansive mapping.
Numerous authors have extensively studied iterative algorithms for strictly pseudo-

contractive mapping; for example, see [1, 3, 6, 16, 27–29] and the references therein. For
instance, in 1967, Browder and Petryshyn [5] proved that if U is k-strictly pseudocon-
tractive which has a fixed point in C, then the sequence {xn} generated by{

x0 is chosen arbitrarily,
xn+1 = αxn + (1− α)Uxn,

(1.11)

converges weakly to the fixed point of U provided that α ∈ (k, 1). Thereafter, Marino and
Xu [16] modified Algorithm (1.11) and considered the following algorithm:{

x0 is chosen arbitrarily,
xn+1 = αnxn + (1− αn)Uxn.

(1.12)

It was proved by Marino and Xu[16] that the sequence {xn} generated by Algorithm
(1.12) converges weakly to the common fixed point of U provided that {αn} satisfies the
following conditions:

k < αn < 1 for all n and
∞∑

n=0

(αn − k)(1− αn) = ∞. (1.13)

In 2007, Acedo and Xu [1] considered the following algorithm:{
x0 is chosen arbitrarily,

xn+1 = αnxn + (1− αn)
∑N

s=1 λsUsxn,∀n ≥ 0,
(1.14)

where λs > 0, ∀s positive integer,
∑N

s=1 λs = 1, {Us}Ns=1 is k-strictly pseudocontractive
mappings and {αn} is a sequence in (0,1) satisfied some certain conditions, see [1]. It
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was proved that the sequence {xn} generated by Algorithm 1.14 converges weakly to a
solution of Problem (1.4).

Motivated by these results, in this paper, we construct parallel and cyclic algorithms of
a finite family of strictly pseudocontractive mappings to solve the following split common
fixed point problems:

Find x∗ ∈
N⋂
s=1

Fix(Us) such that Ax∗ ∈
M⋂
r=1

Fix(Tr), (1.15)

where N ≥ 1 and M ≥ 1 are positive integers, {Us}Ns=1 and {Tr}Mr=1 are N and M strictly
pseudocontractive mappings.

Define U and T by

U =
N∑
s=1

λsUs and T =
M∑
r=1

βrTr, (1.16)

where s and r are positive integers, λs > 0, βr > 0,
∑N

s=1 λs = 1, and
∑M

r=1 βr = 1. We

will show that U and T are strictly pseudocontractive mappings, Fix(U) =
⋂N

s=1 Fix(Us)

and Fix(T ) =
⋂M

r=1 Fix(Tr). We will also show that the sequence {xn} defined by
x0 ∈ H1 is chosen arbitrarily,

un = xn + γA∗(∑M
r=1 βrTr − I

)
Axn,

xn+1 = αnun + (1− αn)
∑N

s=1 λsUsun,∀n ≥ 0,

(1.17)

converges weakly to the solution of Problem (1.15).
In Algorithm (1.17), the sequences {βr}Mr=1 and {λs}Ns=1 are constants in the sense that

both are independent of n; thus, we will consider a more general case in which {βr}Mr=1
and {λs}Ns=1 depend on n. Hence, we consider the following iterative algorithm which
generates a sequence {xn} by

x0 ∈ H1 is chosen arbitrarily,

un = xn + γA∗(∑M
r=1 βn

r Tr − I
)
Axn,

xn+1 = αnun + (1− αn)
∑N

s=1 λn
sUsun,∀n ≥ 0.

(1.18)

By imposing some appropriate conditions on {βr}Mr=1 and {λs}Ns=1 , we will also show that
the sequence {xn} generated by Algorithm (1.18) will converge weakly to the solution of
Problem (1.15).

Another approach to the Problem (1.15) is the cyclic algorithm:
Let x0 be arbitrarily chosen, define a sequence {xn} cyclically by;{

u0 = x0 + γA∗(T0 − I
)
Ax0 ,

x1 = α0u0 + (1− α0)U0u0 ,{
u1 = x1 + γA∗(T1 − I

)
Ax1 ,

x2 = α1u1 + (1− α1)U1u1 ,

...{
uN = xN + γA∗(T0 − I

)
AxN ,

xN+1 = αNuN + (1− αN )U0uN ,

...
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In a more compact form, the sequence {xn} can be written as{
un = xn + γA∗(T[n] − I

)
Axn,

xn+1 = αnun + (1− αn)U[n]un,
(1.19)

where [n] := n(modN) with the mod function taking values in {1, 2, 3, ..., N}. We will
also show that Algorithm (1.19) converges weakly to the solution of Problem (1.15).

In what follows, we adopt the notations; I to be the identity operator on H1 , F ix(U)
to be the fixed point set of U i.e., Fix(U) = {x ∈ H1 : Ux = x}, “ → ” and “ ⇀ ” to
denote the strong and weak convergence, respectively, and ωω(xn) to denote the set of the
cluster point of {xn} in the weak topology, i.e., {there exists a subsequence say {xnk

} of
{xn} such that xnk

⇀ x}, and Γ to denote the solution set of SCFPP (1.15). i.e.,

Γ =
{
x∗ ∈ C :=

N⋂
s=1

Fix(Us) such that Ax∗ ∈ Q :=
M⋂
r=1

Fix(Tr)
}
. (1.20)

2. Preliminaries

The following definitions and lemmas were used in proving our main results.

Definition 2.1. Let C be a nonempty closed convex subset of a Hilbert space (H). A
sequence {xn} ∈ H is called Fejer monotone with respect to C if

∥xn+1 − x∥ ≤ ∥xn − x∥, ∀x ∈ C.

Definition 2.2. Let H be a Hilbert space. A mapping T : H → H is said to be
demiclosed at zero, if for any sequence {xn} ∈ H, there exists x ∈ H such that if xn ⇀ x
and Txn → 0, then Tx = 0.

Lemma 2.3. (Bauschke and Borwein [4]) Let {xn} be a Fejer monotone with respect to
a nonempty closed convex subset C, then {PCxn} converges strongly. Moreover, xn ⇀
x∗ ∈ C if and only if ωω(xn) ⊂ C.

Lemma 2.4. (Acedo and Xu [1]) For each x, y ∈ H1 , the following results hold.

(i) ∥x+ y∥2
= ∥x∥2

+ 2 ⟨x, y⟩+ ∥y∥2
,

(ii) ∥αx+ (1− α)y∥2
= α ∥x∥2

+ (1− α) ∥y∥2 − α(1− α) ∥x− y∥2
, ∀ α ∈ [0, 1].

Lemma 2.5. (Marino and Xu [16]) Let C be a nonempty closed convex subset of a Hilbert
space H1 and T : C → C be a k-strictly pseudocontractive.

Then the following results hold:

(i) ∥Tx− Ty∥ ≤ 1+ k
1−k∥x− y∥,∀x, y ∈ C. i.e. T satisfies the Lipschitz condition.

(ii) (T − I) is demiclosed at zero.
(iii) Given an integer M ≥ 1, assume for each 1 ≤ j ≤ M, Tj : C → C is kj−

strictly pseudocontractive for some kj ∈ [0, 1). Suppose that {λj}Mj=1 is a positive

sequence such that
∑M

j=1 λj = 1, and let T =
∑M

j=1 λjTj .

Then, T is k−strictly pseudocontractive with k = max{kj : 1 ≤ j ≤ M}.
(iv) Let {Tj}Mj=1 , {λj}Mj=1 and T be as in (iii) above. Assume that {Tj}Mj=1 has a
common fixed point. Then

Fix(T ) =
M⋂
j=1

Fix(Tj).
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Lemma 2.6. Let T : H1 → H1 be k-strictly pseudocontractive mapping. Assume that
the Fix(T ) ̸= ∅. Then, for each x ∈ H1 and p ∈ Fix(T ), the following inequalities are
equivalent.

(i) ∥Tx− p∥2 ≤ ∥x− p∥2
+ k ∥Tx− x∥2

,

(ii) 2 ⟨Tx− x, x− p⟩ ≤ −(1− k) ∥Tx− x∥2
,

(iii) 2 ⟨Tx− x, Tx− p⟩ ≤ (1 + k) ∥Tx− x∥2
.

Lemma 2.7. (Acedo and Xu [1]) Let C be a nonempty closed convex subset of a Hilbert
space H1 and PC be a metric projection from H1 onto C. Then, ∀y ∈ C and x ∈ H1 ,

∥x− PC(x)∥2 ≤ ∥y − x∥2 − ∥y − PC(x)∥2 .

Lemma 2.8. (Xu [27]) Let {an} and {σn} be sequences of nonnegative real numbers such
that

an+1 ≤ (1− γn)an + σn, n ≥ 0,

where {γn} is a sequence in (0, 1) such that;

(i) lim
n→∞

γn = 0 and
∑

γn = ∞;

(ii) lim
n→∞

σn

γn
≤ 0 or

∑
|σn| < ∞.

Then lim
n→∞

an = 0.

3.Main Results

3.1. Parallel Algorithm (Weak Convergence Results)

Theorem 3.1. Let T : H1 → H1 and U : H2 → H2 be k1 and k2 -strictly pseudocontrac-
tive mappings with k = max{k1 , k2}. Let also A : H1 → H2 be a bounded linear operator
with its adjoint A∗. Assume that Γ ̸= ∅ and let {xn} be the sequence defined by x0 ∈ H1 is chosen arbitrarily,

un = xn + γA∗(T − I
)
Axn,

xn+1 = αnun + (1− αn)Uun,∀n ≥ 0,
(3.1)

where k < αn < 1 and γ ∈ (0, 1−k
L ) with L = ∥AA∗∥. Then, xn ⇀ x∗ ∈ Γ.

Proof. First, we verify that {xn} is a Fejer monotone sequence on Γ.
Now, let x∗ ∈ Γ. By Equation (3.1), Lemma 2.4, and the fact that U and T are

k-strictly pseudocontractive mappings, we have

∥xn+1 − x∗∥2
= ∥αnun + (1− αn)Uun − x∗∥2

= ∥αn(un − x∗) + (1− αn)(Uun − x∗)∥2

= αn ∥un − x∗∥2
+ (1− αn)∥Uun − x∗∥2 − αn(1− αn) ∥Uun − un∥2

≤ αn ∥un − x∗∥2
+ (1− αn)

(
∥un − x∗∥2 + k∥Uun − un∥2)

− αn(1− αn) ∥Uun − un∥2

= ∥un − x∗∥2 − (αn − k)(1− αn) ∥Uun − un∥2
, (3.2)
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and

∥un − x∗∥2
=

∥∥(xn − x∗) + γA∗(T − I
)
Axn

∥∥2

= ∥xn − x∗∥2
+ γ2 ∥∥A∗(T − I

)
Axn

∥∥2
+ 2γ

〈
xn − x∗, A∗(T − I

)
Axn

〉
≤ ∥xn − x∗∥2

+ γ2 ∥AA∗∥ ∥(T − I)Axn∥2

+ 2γ ⟨Axn −Ax∗, TAxn −Axn⟩

≤ ∥xn − x∗∥2
+ γ2L ∥TAxn −Axn∥2 − γ(1− k)∥TAxn −Axn∥2

= ∥xn − x∗∥2 − γ(1− k − γL)∥TAxn −Axn∥2 . (3.3)

By Equations (3.2) and (3.3), we obtain that

∥xn+1 − x∗∥2 ≤ ∥xn − x∗∥2 − γ(1− k − γL)∥TAxn −Axn∥2

− (αn − k)(1− αn) ∥Uun − un∥2
(3.4)

≤ ∥xn − x∗∥2
.

Thus, {xn} is Fejer monotone. Therefore, the sequence {∥xn − x∗∥} converges. Next, we
show that

lim
n→∞

∥TAxn −Axn∥ = 0 and lim
n→∞

∥Uun − un∥ = 0. (3.5)

This follows trivially from Equation (3.4) and the fact that {∥xn−x∗∥} converges. Finally,
we show that xn ⇀ x∗. To show this, it suffices to show that ωω ⊂ Γ (see Lemma 2.3).
Let x ∈ ωω(xn), then there exists {xnk

} of {xn} such that xnk
⇀ x. By continuity of A,

we have Axnk
⇀ Ax. By Equation (3.5) and demiclosedness of (T − I) at zero, we deduce

that TAx = Ax, this implies that Ax ∈ Fix(T ).
Similarly, by Equations (3.1), (3.5) and the fact that xnk

⇀ x, we have unk
⇀ x.

By (3.5) and demiclosedness of (U − I) at zero, we have that Ux = x, this implies that
x ∈ Fix(U). Hence, x ∈ Γ. By uniqueness of limit and Lemma 2.3, we conclude that
xn ⇀ x∗.

Theorem 3.2. Let M ≥ 1 and N ≥ 1 be integers, Tr : H1 → H1 , 1 ≤ r ≤ M and Us :
H2 → H2 , 1 ≤ s ≤ N be kr and ks−strictly pseudocontractive mappings with 0 ≤ kr < 1
and 0 ≤ ks < 1, respectively, and let k = max{kr and ks}, A : H1 → H2 be a bounded
linear operator with its adjoint A∗. Assume that Γ ̸= ∅, and let {βr}Mr=1 and {λs}Ns=1 be

finite sequences of positive numbers such that
∑M

r=1 βr = 1 and
∑N

s=1 λs = 1, respectively,
and also let {xn} be the sequence defined by Algorithm (1.17), where k < αn < 1 for all
n, and γ ∈ (0, 1−k

L ) with L = ∥AA∗∥. Then, xn ⇀ x∗ ∈ Γ.

Proof. Let U =
∑N

s=1 λsUs and T =
∑M

r=1 βrTr. By Lemma 2.5, it follows that U and

T are k-strictly pseudocontractive mappings, Fix(U) =
⋂N

s=1 Fix(Us) and Fix(T ) =⋂M
r=1 Fix(Tr), respectively. Hence, we can rewrite Algorithm (1.17) as x0 ∈ H1 is chosen arbitrarily,

un = xn + γA∗(T − I
)
Axn,

xn+1 = αnun + (1− αn)Uun,∀n ≥ 0.
(3.6)

Therefore, all the hypothesis of Theorem 3.1 are satisfied. Hence, the proof of this theorem
follows directly from Theorem 3.1.
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In Theorem 3.2 Algorithm (1.17), the sequences {βr}Mr=1 and {λs}Ns=1 are constants in
the sense that both sequences are independent of n. In the next theorem, we consider a
more general case by allowing those sequences to depend on n.

Theorem 3.3. Let M ≥ 1 and N ≥ 1 be integers, Tr : H1 → H1 , 1 ≤ r ≤ M and Us :
H2 → H2 , 1 ≤ s ≤ N be kr and ks-strictly pseudocontractive mappings with 0 ≤ kr < 1
and 0 ≤ ks < 1, and let k = max{kr and ks}, A : H1 → H2 be a bounded linear operator
with its adjoint A∗. Assume that Γ ̸= ∅, and let {xn} be the sequence defined by Algorithm
(1.18). Where γ ∈ (0, 1−k

L ) with L = ∥AA∗∥, k < αn < 1, {λn
r }Mr=1 and {βn

s }Ns=1 are finite
sequences of positive numbers satisfying the following conditions:

(i) lim
n→∞

αn = 0,
∑

αn = +∞;

(iii)
∑∞

n=0
∑M

r=1 |λn+1
r − λn

r | < ∞ and
∑∞

n=0
∑N

s=1 |βn+1
s − βn

s | < ∞;

(iii)
∑M

r=1 λn
r = 1,

∑N
s=1 βn

s = 1 ∀n, inf
n≥1

λn
s > 0 and inf

n≥1
βn
r > 0.

Then xn ⇀ x∗ ∈ Γ.

Proof. Step 1. Here, we show that {xn} is Fejer monotone on Γ.

Write, for each n ≥ 1, Un =
∑N

s=1 λn
sUs and Tn =

∑M
r=1 βn

r Tr. By Lemma 2.5,

Un and Tn are k-strictly pseudocontractive mappings, Fix(Un) =
⋂N

s=1 Fix(Us) and

Fix(Tn) =
⋂M

r=1 Fix(Tr), respectively, and Algorithm (1.18) can be written as x0 ∈ H1 is chosen arbitrarily,
un = xn + γA∗(Tn − I

)
Axn,

xn+1 = αnun + (1− αn)U
nun,∀n ≥ 0.

(3.7)

Let x∗ ∈ Γ. The following inequality is obtained the same way as Equation (3.4) in the
proof of Theorem 3.1, replace U with Un and T with Tn, we have

∥xn+1 − x∗∥2 ≤ ∥xn − x∗∥2 − γ(1− k − γL)∥TnAxn −Axn∥2

− (αn − k)(1− αn) ∥Unun − un∥2
. (3.8)

Thus, {xn} is Fejer monotone. Therefore, {∥xn − x∗∥} converges.

Step 2. Here, we show that

lim
n→∞

∥TnAxn −Axn∥ = 0 and lim
n→∞

∥Unun − un∥ = 0. (3.9)

By (3.7), we have that∥∥Tn+1 Axn+1 −Axn+1
∥∥2

= ∥αnAun + (1− αn)U
nAun − Tn+1 Axn+1 ∥2

=
∥∥αn(Aun − Tn+1 Axn+1 ) + (1− αn)(U

nAun − Tn+1 Axn+1 )
∥∥2

= αn

∥∥Aun − Tn+1 Axn+1
∥∥2

+ (1− αn)
∥∥UnAun − Tn+1 Axn+1

∥∥2

− αn(1− αn) ∥UnAun −Aun∥2
. (3.10)

Since Tn is strictly pseudocontractive, we deduce that

∥UnAun − Tn+1 Axn+1 ∥2 ≤ α2
n∥UnAun −Aun∥2

+ k∥Tn+1 Axn+1 −Axn+1 ∥2 . (3.11)
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From (3.10) and (3.11), we have∥∥Tn+1 Axn+1 −Axn+1
∥∥2 ≤ k(1− αn)∥Tn+1 Axn+1 −Axn+1 ∥2

+ αn∥Aun − Tn+1 Axn+1 ∥2

− αn(1− αn)
2∥UnAun −Aun∥2 . (3.12)

Let Tn+1 Axn+1 = TnAxn+1 + zn, where zn :=
∑M

r=1 (β
n+1
r − βn

r )TrAxn+1 , then

∥Aun − Tn+1 Axn+1 ∥2 = ∥Aun − TnAxn+1 ∥2 + 2 ⟨Aun − TnAxn+1 ,−zn⟩
+ ∥zn∥2 . (3.13)

By Lemma 2.6 (ii), we deduce that

∥Aun − TnAxn+1 ∥2 = ∥Axn +AγA∗(Tn − I
)
Axn − TnAxn+1 ∥2

= ∥Axn − TnAxn+1 ∥2 + ∥AγA∗(Tn − I
)
Axn∥2

+ 2
〈
Axn − TnAxn+1 , AγA∗(Tn − I

)
Axn

〉
≤ ∥Axn − TnAxn+1 ∥2 + γ2L2∥TnAxn −Axn∥2

− γ(1− k)∥A∗(TnAxn −Axn)∥2 . (3.14)

From Equation (3.13), (3.14) and the fact that Tn is strictly pseudocontractive, we have

∥Aun − Tn+1 Axn+1 ∥2 ≤ ∥Axn −Axn+1 ∥2 + k∥Tn+1 Axn+1 −Axn+1 ∥2

+ 2k
〈
Tn+1 Axn+1 −Axn+1 ,−zn

〉
+ (1 + k)∥zn∥2 + 2 ⟨Aun − TnAxn+1 ,−zn⟩
+ γ2L2∥TnAxn −Axn∥2 . (3.15)

From Equation (3.7) and the fact that Un is strictly pseudocontractive, we have

∥Axn −Axn+1 ∥2 = ∥αn(Aun −Axn) + (1− αn)(U
nAun −Axn)∥2

= αn∥Aun −Axn∥2 + (1− αn)∥UnAun −Axn∥2

− αn(1− αn)∥UnAun −Aun∥2

= ∥Aun −Axn∥2 + (1− αn)k∥UnAun −Aun∥2

− αn(1− αn)∥UnAun −Aun∥2

≤ γ2L2∥TnAxn −Axn∥2

− (αn − k)(1− αn)∥UnAun −Aun∥2 . (3.16)

Thus, we deduce from Equations (3.12), (3.15) and (3.16) that

(1− k)
∥∥Tn+1 Axn+1 −Axn+1

∥∥2

≤ 2αnγ
2L2∥TnAxn −Axn∥2 + 2αnk

〈
Tn+1 Axn+1 −Axn+1 ,−zn

〉
+(1 + k)αn∥zn∥2 + 2αn ⟨Aun − TnAxn+1 ,−zn⟩ . (3.17)
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Since (1− k) > 0, we deduce from Equation (3.17) that∥∥Tn+1 Axn+1 −Axn+1
∥∥2

≤
(
1− αnγ

2L2)∥Axn − TnAxn∥2 + 3αnγ
2L2∥TnAxn −Axn∥2

+
2αnk

1− k

〈
Tn+1 Axn+1 −Axn+1 ,−zn

〉
+
(1 + k)

1− k
αn∥zn∥2 +

2αn

1− k
⟨Aun − TnAxn+1 ,−zn⟩ (3.18)

and this turn to implies that

ξn+1 ≤ (1− βn)ξn + ηn, where (3.19)

ξn = ∥TnAxn −Axn∥2
, ηn =

αnM∥zn∥
1− k

+ 3αnγ
2L2∥TnAxn −Axn∥2 and

βn = αnγ
2L2 , where M is chosen appropriately such that

2k|
〈
Tn+1 Axn+1 −Axn+1 ,−zn

〉
|+ 2| ⟨Aun − TnAxn+1 ,−zn⟩ |
+ (1 + k)∥zn∥ ≤ M∥zn∥.

Trivially, lim
n→∞

βn = 0,
∑

βn = ∞ and lim
n→∞

ηn

βn
≤ 0. Hence, by Lemma 2.8, we deduce that

lim
n→∞

∥TnAxn −Axn∥ = 0. (3.20)

On the other hand,

∥Un+1 un+1 − un+1 ∥2 = ∥Un+1 un+1 − xn+1 ∥2 + ∥γA∗(Tn+1 − I)Axn+1 ∥2

+ 2
〈
Un+1 un+1 − xn+1 ,−γA∗(Tn+1 − I)Axn+1

〉
. (3.21)

Let Un+1 un+1 = Unun+1 + qn, where qn :=
∑N

s=1 (λn+1
s − λn

s )Usun+1 . The fact that Un

is k-strictly pseudocontractive mapping, we have that

∥Un+1 un+1 − xn+1 ∥2 = ∥Unun+1 − xn+1 + qn∥2

= ∥Unun+1 − xn+1 ∥2 + ∥qn∥2 + 2 ⟨Unun+1 − xn+1 , qn⟩
≤ ∥un+1 − xn+1 ∥2 + k∥Unun+1 − un+1 ∥2 + ∥qn∥2

+ 2 ⟨Unun+1 − xn+1 , qn⟩
= ∥un+1 − xn+1 ∥2 + k∥Un+1 un+1 − un+1 ∥2

+ (1 + k)∥qn∥2 + 2 ⟨Unun+1 − xn+1 , qn⟩
+ 2k

〈
Un+1 un+1 − un+1 ,−qn

〉
(3.22)

From Equations (3.21) and (3.22), we have that

(1− k)∥Un+1 un+1 − un+1 ∥2

≤ ∥un+1 − xn+1 ∥2 + ∥γA∗(Tn+1 − I)Axn+1 ∥2

+2 ⟨Unun+1 − xn+1 , qn⟩+ 2k
〈
Un+1 un+1 − un+1 ,−qn

〉
+(1 + k)∥qn∥2 + 2

〈
Un+1 un+1 − xn+1 ,−γA∗(Tn+1 − I)Axn+1

〉
. (3.23)
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On the other hand,

∥un+1 − xn+1 ∥2 ≤ ∥un+1 − un∥2 − (1− αn)(αn − k)∥Unun − un∥2 (3.24)

and

∥un+1 − un∥2
= ∥xn+1 − xn∥2 + ∥γA∗(Tn+1 − I)Axn+1 − γA∗(Tn − I)Axn∥2

+2
〈
xn+1 − xn, γA

∗(Tn+1 − I)Axn+1 − γA∗(Tn − I)Axn

〉
. (3.25)

Furthermore, we compute

∥xn+1 − xn∥2 ≤ αn ∥un − xn∥2
+ (1− αn) ∥Unun − un + un − xn∥2

≤ ∥γA∗(Tn − I)Axn∥2
+ (1− αn) ∥Unun − un∥2

+ 2(1− αn) ⟨Unun − un, γA
∗(Tn − I)Axn⟩ . (3.26)

From Equations (3.25) and (3.26), we have

∥un+1 − un∥2

≤ ∥γA∗(Tn+1 − I)Axn+1 − γA∗(Tn − I)Axn∥2

+(1− αn) ∥Unun − un∥2
+ ∥γA∗(Tn − I)Axn∥2

+2(1− αn) ⟨Unun − un, γA
∗(Tn − I)Axn⟩

+2
〈
xn+1 − xn, γA

∗(Tn+1 − I)Axn+1 − γA∗(Tn − I)Axn

〉
. (3.27)

Thus, by (3.23), (3.24) and (3.27), we deduce that

∥Un+1 un+1 − un+1 ∥2

≤ (1− αn) ∥Unun − un∥2
+ ∥γA∗(Tn − I)Axn∥2

+∥γA∗(Tn+1 − I)Axn+1 ∥2

+∥γA∗(Tn+1 − I)Axn+1 − γA∗(Tn − I)Axn∥2

+D∥qn∥+
2(1− αn)

(1− k)
⟨Unun − un, γA

∗(Tn − I)Axn⟩

+
2

(1− k)

〈
xn+1 − xn, γA

∗(Tn+1 − I)Axn+1 − γA∗(Tn − I)Axn

〉
+

2

(1− k)

〈
Un+1 un+1 − xn+1 ,−γA∗(Tn+1 − I)Axn+1

〉
,

where D is chosen appropriately such that

2

(1− k)
|⟨Unun+1 − xn+1 , qn⟩|+

2k

(1− k)

∣∣〈Un+1 un+1 − un+1 ,−qn
〉∣∣

+
(1 + k)

(1− k)
∥qn∥ ≤ D∥qn∥.

Thus, we deduce that

ξn+1 ≤ (1− βn)ξn + ηn, (3.28)
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where

ξn = ∥Unun − un∥2
,

βn = αn, and

ηn = ∥γA∗(Tn − I)Axn∥2

+ ∥γA∗(Tn+1 − I)Axn+1 ∥2 + ∥γA∗(Tn+1 − I)Axn+1 − γA∗(Tn − I)Axn∥2

+D∥qn∥+
2(1− αn)

(1− k)
⟨Unun − un, γA

∗(Tn − I)Axn⟩

+
2

(1− k)

〈
xn+1 − xn, γA

∗(Tn+1 − I)Axn+1 − γA∗(Tn − I)Axn

〉
+

2

(1− k)

〈
Un+1 un+1 − xn+1 ,−γA∗(Tn+1 − I)Axn+1

〉
.

The fact that lim
n→∞

∥TnAxn − Axn∥ = 0, we deduce that lim
n→∞

βn = 0,
∑

βn = ∞, and

lim
n→∞

ηn

βn
≤ 0. Hence, by Lemma 2.8, we have that lim

n→∞
∥Unun − un∥ = 0, which complete

the proof of step 2.

Step 3. Here, we show that

lim
n→∞

∥TAxn −Axn∥ = 0 and lim
n→∞

∥Uun − un∥ = 0. (3.29)

From (1.17), we have

∥xn+1 − xn∥ = ∥(1− αn)(U
nun − un) + un − xn∥

= ∥(1− αn)(U
nun − un) + γA∗(Tn − I)Axn∥ .

In view of (3.9), we obtain that

lim
n→∞

∥xn+1 − xn∥ = 0. (3.30)

By (3.7), we have that

∥un+1 − un∥ = ∥xn+1 − xn∥
+ ∥γA∗(Tn+1 − I)A)xn+1 − γA∗(Tn − I)A)xn∥

Thus, in view of (3.9) and (3.30), we deduce that

lim
n→∞

∥un+1 − un∥ = 0. (3.31)

Given Equations (3.9), (3.31) and the fact that Un is k−strictly pseudocontractive, thus,
for each n, Un satisfies η−Lipschitzian condition, see Lemma 2.7, where η is chosen
appropriately such that 1+ k

1−k < η. Hence, we have

∥un − Uun∥ ≤ ∥un − Unun∥+ ∥Uun − Unun∥
≤ ∥un − Unun∥+ η

∥∥un − Un−1un−1 + Un−1un−1 − Un−1un

∥∥
≤ ∥un − Unun∥+ η2 ∥un − un−1∥
+ η

∥∥un − un−1 + un−1 − Un−1un−1
∥∥

≤ ∥un − Unun∥+ η(η + 1) ∥un − un−1∥+ η
∥∥un−1 − Un−1un−1

∥∥ .
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Thus, as n → ∞, we have that

lim
n→∞

∥un − Uun∥ = 0.

Similarly, from the fact that lim
n→∞

∥Axn − TnAxn∥ = 0, lim
n→∞

∥xn+1 − xn∥ = 0, and Tn

is k−strictly pseudocontractive, we also obtain that lim
n→∞

∥Axn − TAxn∥ = 0.

Step 4. Here, we show that xn ⇀ x∗. To show this, it suffices to show that ωω ⊆ Γ,
see Lemma 2.3. Now, let x ∈ ωω(xn), this implies that there exists a sub-sequence {xnk

}
of {xn} such that xnk

⇀ x. By continuity of A, we have that Axnk
⇀ Ax. By (3.29)

and demiclosed property of (T − I) at zero, we deduce that TAx = Ax, this implies that
Ax ∈ Fix(T ).

Similarly, by (3.1), (3.5) and the fact that xnk
⇀ x, it follows that unk

⇀ x. Also by
(3.29) and demiclosed property of (U − I) at zero, we also deduce that Ux = x. This
implies that x ∈ Fix(U). Hence, x ∈ Γ. By uniqueness of limit and Lemma 2.3, we
conclude that xn ⇀ x∗.

3.2. Strong Convergence Theorems

It is known that, in finite-dimensional Hilbert space, weak and strong convergence
are equivalent, and it is different from infinite dimensional space where they are not
equivalent. For the example of weak convergence which is not strong convergence, see
[2] and reference therein. In Theorems 3.1, 3.2, and 3.3, Algorithm (3.1), (1.17), and
(1.18) converges weakly in an infinite dimensional Hilbert space, to get strong convergence
results, we modify these algorithms.

The following theorem is an extension of Theorem 3.2 from a weak convergence to a
strong convergence.

Theorem 3.4. Let C1 be a nonempty closed convex subset of H1 , M ≥ 1 and N ≥ 1 be
integers, Tr : C1 → H1 , 1 ≤ r ≤ M, and Us : H2 → H2 , 1 ≤ s ≤ N be kr and ks− strictly
pseudocontractive mappings with 0 ≤ kr < 1 and 0 ≤ ks < 1, respectively. And also
let k = max{kr and ks, for r = 1, 2, 3, ...,M and s = 1, 2, 3, ..., N} such that for all n,
k < αn < 1, and A : H1 → H2 be a bounded linear operator with its adjoint A∗. Assume
that Γ ̸= ∅, and let {λs}Nr=1 and {βr}Mr=1 be finite sequences of positive numbers such that∑N

s=1 λs = 1 and
∑M

r=1 βr = 1, and also let {xn} be the sequence generated by

x1 ∈ C1 ,

un = xn + γA∗(∑M
r=1 βrTr − I

)
Axn,

yn = αnun + (1− αn)
∑N

s=1 λsUsun,

Cn+1 =
{
z ∈ Cn : ∥yn − z∥2 ≤ ∥un − z∥2 ≤ ∥xn − z∥2

}
,

xn+1 = PCn+1
(x1),∀n ≥ 1,

(3.32)

where γ ∈ (0, 1−k
L ) with L = ∥AA∗∥. Then xn → x∗ ∈ Γ.

Proof. Let U =
∑N

s=1 λsUs and T =
∑M

r=1 βrTr. By Lemma 2.5, U and T are k− strictly

pseudocontractive, Fix(U) =
⋂N

s=1 Fix(Us) and Fix(T ) =
⋂M

r=1 Fix(Tr), respectively.
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Therefore, Algorithm (3.32) can be rewrite as

x1 ∈ C1 ,
un = xn + γA∗(T − I

)
Axn,

yn = αnun + (1− αn)Uun,

Cn+1 =
{
z ∈ Cn : ∥yn − z∥2 ≤ ∥un − z∥2 ≤ ∥xn − z∥2

}
,

xn+1 = PCn+1(x1), ∀n ≥ 1.

(3.33)

Step 1. Here, we show that for each n ≥ 1, Cn is closed and convex. Trivially, Cn is
closed. Next, we show that Cn is convex. To show this, it suffices to show that for each
r1 , r2 ∈ Cn, and ξ ∈ (0, 1), ξr1 + (1− ξ)r2 ∈ Cn. Now, we compute

∥yn − ξr1 − (1− ξ)r2∥2 = ξ∥yn − r1∥2 + (1− ξ)∥yn − r2∥2 − (1− ξ)ξ∥r1 − r2∥2

≤ ξ∥un − r1∥2 + (1− ξ)∥un − r2∥2 − (1− ξ)ξ∥r1 − r2∥2

= ∥un − ξr1 − (1− ξ)r2∥2 .

Similarly, we also obtain that

∥yn − ξr1 − (1− ξ)r2∥2 ≤ ∥xn − ξr1 − (1− ξ)r2∥2 .

This show that for each r1 , r2 ∈ Cn, ξr1 + (1− ξ)r2 ∈ Cn.

Step 2. Here, we show that Γ ⊂ Cn. Following the proof of Equation (3.4), for each
q ∈ Γ, it follows from (3.33) that

∥yn − q∥2 ≤ ∥xn − q∥2 − γ(1− k − γL)∥TAxn −Axn∥2

− (αn − k)(1− αn) ∥Uun − un∥2
. (3.34)

Thus, Γ ∈ Cn.

Step 3. Here we show that {xn} is a Cauchy sequence. By the definition of Cn+1 , we
deduce that xn = PCn

(x1). The fact that Γ ⊂ Cn+1 ⊂ Cn and xn+1 = PCn+1
(x1) ∈ Cn,

it follows that

∥xn+1 − x1∥ ≤ ∥x1 − q∥, for all n ∈ N and q ∈ Γ.

Thus, {xn} is bounded. By Lemma 2.7, we obtain that

∥xn+1 − xn∥2 + ∥xn − x1∥2 = ∥xn+1 − PCn
x1∥2 + ∥x1 − PCn

x1∥2

≤ ∥xn+1 − x1∥2 .

It is clear that {∥xn − x1∥} is a monotone increasing sequence. By the boundedness of
{xn}, we deduce that the

lim
n→∞

∥xn − x1∥ exist. (3.35)

Let m,n ∈ N with m > n, by the definition of Cn, we have xm = PCm
(x1) ∈ Cn. It

follows from Lemma (2.7) that

∥xm − xn∥2 + ∥xn − x1∥2 = ∥xm − PCnx1∥2 + ∥x1 − PCnx1∥2

≤ ∥xm − x1∥2 . (3.36)
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By Equations (3.35) and (3.36), we have that lim
n→∞

∥xm − xn∥ = 0. Therefore, {xn} is a

Cauchy sequence.

Step 4. Here, we show that

lim
n→∞

∥TAxn −Axn∥ = 0 and lim
n→∞

∥Uun − un∥ = 0. (3.37)

From (3.33) and the fact that xn+1 ∈ Cn, we have

∥yn − xn+1 ∥2 ≤ ∥xn − xn+1 ∥2 − γ(1− k − γL)∥TAxn −Axn∥2

− (αn − k)(1− αn) ∥Uun − un∥2
. (3.38)

From (3.38) and the fact that {xn} is a Cauchy sequence, we deduce that

lim
n→∞

∥yn − xn+1 ∥ = 0. (3.39)

Equation (3.37) follows from Equations (3.38), (3.39), and the fact that {xn} is a Cauchy
sequence. On the other hand,

∥un − xn∥ ≤ ∥un − xn+1 ∥+ ∥xn+1 − xn∥
≤ 2∥xn+1 − xn∥. (3.40)

From (3.40) and the fact that {xn} is a Cauchy sequence, we deduce that

lim
n→∞

∥un − xn∥ = 0. (3.41)

Similarly, from Equation (3.39) and the fact that {xn} is a Cauchy sequence, we deduce
that

lim
n→∞

∥un − yn∥ = 0. (3.42)

From Equation (3.34), we deduce that

∥TAxn −Axn∥2 ≤ ∥xn − q∥2 − ∥yn − q∥2

γ(1− k − γL)

≤
∥yn − xn∥

[
∥xn − yn∥+ 2 ∥yn − q∥

]
γ(1− k − γL)

. (3.43)

Therefore, by (3.39), we have that lim
n→∞

∥TAxn −Axn∥ = 0. Similarly, by (3.41), we have

that lim
n→∞

∥Uun − un∥ = 0.

Step 5. Finally, we show that xn → x∗. Since {xn} is Cauchy, we assume that xn → x∗.
Thus, by (3.33), we have that un → x∗. This implies that un ⇀ x∗. The fact that
lim
n→∞

∥Uun − un∥ = 0 together with demiclosedness of (U − I) at zero, we deduce that

x∗ ∈ Fix(U).
On the other hand, by the definition of A and xn → x∗, we have that Axn → Ax∗.

This implies that Axn ⇀ x∗. The fact that lim
n→∞

∥TAxn − Axn∥ = 0 together with the

demiclosedness of (T − I) at zero, we deduce that Ax∗ ∈ Fix(T ). Hence, x∗ ∈ Γ, this
turn to implies that xn → x∗.

In Theorem 3.3, the sequences {λs}Nr=1 and {βr}Mr=1 are constant in the sense that both
are independent on n. In the next theorem, we considered a more general case by allowing
those sequences to depend on n. Theorem 3.5 does not only extends Theorem 3.4 but also
extends and improves Theorem 3.2 from a weak convergence to a strong convergence.
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Theorem 3.5. Let C1 be a nonempty closed convex subset of H1 , M ≥ 1 and N ≥ 1
be integers, Tr : C1 → H1 , 1 ≤ r ≤ M and Us : H2 → H2 , 1 ≤ s ≤ N be kr and
ks−strictly pseudocontractive mappings with 0 ≤ kr < 1 and 0 ≤ ks < 1 and let k =
max{kr and ks, for 1 ≤ r ≤ M and 1 ≤ s ≤ N}, A : H1 → H2 be a bounded linear
operator with its adjoint A∗. Assume that Γ ̸= ∅, and let {xn} be the sequence defined by

x1 ∈ C1 ,

yn = αnun + (1− αn)
∑N

s=1 λn
sUsun,

un = xn + γA∗(∑M
r=1 βn

r Tr − I
)
Axn,

Cn+1 =
{
z ∈ Cn : ∥yn − z∥2 ≤ ∥un − z∥2 ≤ ∥xn − z∥2

}
,

xn+1 = PCn+1
(x1),∀n ≥ 1,

(3.44)

where γ ∈ (0, 1−k
L ) with L = ∥AA∗∥, k < {αn} < 1, {λn

r }Mr=1 and {βn
s }Ns=1 are finite

sequences of positive numbers satisfies the following conditions:

(i) lim
n→∞

αn = 0,
∑

αn = +∞;

(ii)
∑∞

n=0
∑N

s=1 |λn+1
s − λn

s | < ∞ and
∑∞

n=0
∑M

r=1 |βn+1
r − βn

r | < ∞;

(iii)
∑N

s=1 λn
s = 1,

∑M
r=1 βn

r = 1 ∀n, inf
n≥1

λn
s > 0 and inf

n≥1
βn
r > 0.

Then, xn → x∗ ∈ Γ.

Proof. Write for each n ≥ 1, Un =
∑N

s=1 λn
sUs and Tn =

∑M
r=1 βn

r Tr. By Lemma 2.5,

Un and Tn are k−strictly pseudocontractive, Fix(Un) =
⋂N

s=1 Fix(Us) and Fix(Tn) =⋂M
r=1 Fix(Tr), respectively. Therefore, we can rewrite Algorithm (3.44) as

x1 ∈ C1 ,
yn = αnun + (1− αn)U

nun,
un = xn + γA∗(Tn − I

)
Axn,

Cn+1 =
{
z ∈ Cn : ∥yn − z∥2 ≤ ∥un − z∥2 ≤ ∥xn − z∥2

}
,

xn+1 = PCn+1
(x1),∀n ≥ 1.

(3.45)

By Theorem 3.4, we see that Cn is closed and convex, Γ ⊂ Cn, and {xn} is Cauchy. Next,
we show that

lim
n→∞

∥TnAxn −Axn∥ = 0 and lim
n→∞

∥Unun − un∥ = 0. (3.46)

From (3.45) and the fact that xn+1 ∈ Cn. Following the same steps as in the proof of
Theorem 3.1, in particular Equation (3.4), we obtain that

∥yn − xn+1 ∥2 ≤ ∥xn − xn+1 ∥2 − γ(1− k − γL)∥TnAxn −Axn∥2

− (αn − k)(1− αn) ∥Unun − un∥2
. (3.47)

The fact that {xn} is Cauchy, we obtain that

lim
n→∞

∥yn − xn+1 ∥ = 0. (3.48)

From (3.48) and the fact that {xn} is Cauchy, we deduce from (3.47) that

lim sup
n→∞

∥TnAxn −Axn∥ = 0 and lim sup
n→∞

∥Unun − un∥ = 0. (3.49)

Next, we show that the limit of (3.49) actually exists.
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From (3.45), we deduce that

∥Tn+1 Axn+1 −Axn+1 ∥2 = ∥Tn+1 Axn+1 −Ayn∥2 + ∥Ayn −Axn+1 ∥2

+ 2
〈
Tn+1 Axn+1 −Ayn, Ayn −Axn+1

〉
= αn∥Aun − Tn+1 Axn+1 ∥2

+ (1− αn)∥UnAun − Tn+1 Axn+1 ∥2

− αn(1− αn)∥UnAun −Aun∥2 + ∥Ayn −Axn+1 ∥2

+ 2
〈
Tn+1 Axn+1 −Ayn, Ayn −Axn+1

〉
. (3.50)

Since each Un and Tn are k-strictly pseudocontractive, we obtain that

∥UnAun − Tn+1 Axn+1 ∥2 ≤ ∥UnAun −Axn+1 ∥2 + k∥Tn+1 Axn+1 −Axn+1 ∥2

≤ ∥Aun −Axn+1 ∥2 + k∥UnAun −Aun∥2

+ k∥Tn+1 Axn+1 −Axn+1 ∥2

≤ ∥Axn −Axn+1 ∥2 + ∥AγA∗(Tn − I)Axn∥2

+ 2 ⟨Axn −Axn+1 , AγA∗(Tn − I)Axn⟩
+ k∥UnAun −Aun∥2 + k∥Tn+1 Axn+1 −Axn+1 ∥2 .

(3.51)

Let Tn+1 Axn+1 = TnAxn+1 +zn, where zn :=
∑M

r=1 (βn+1
r − βn

r )TrAxn+1 . The fact that
Tn is k-strictly pseudocontractive, we have

∥Aun − Tn+1 Axn+1 ∥2 = ∥Aun − TnAxn+1 ∥2 + ∥zn∥2 + 2 ⟨Aun − TnAxn+1 ,−zn⟩
≤ ∥Aun −Axn+1 ∥2 + k∥TnAxn+1 −Axn+1 ∥2 + ∥zn∥2

+ 2 ⟨Aun − TnAxn+1 ,−zn⟩
≤ ∥Axn −Axn+1 ∥2 + ∥AγA∗(Tn − I)Axn∥2

+ 2 ⟨Axn −Axn+1 , AγA∗(Tn − I)Axn⟩
+ k∥Axn+1 − Tn+1 Axn+1 ∥2

+ (1 + k)∥zn∥2 + 2k
〈
Tn+1 Axn+1 −Axn+1 ,−zn

〉
+ 2 ⟨Aun − TnAxn+1 ,−zn⟩ . (3.52)

By substituting Equations (3.51) and (3.52) into (3.50), we have

(1− k)
∥∥Tn+1 Axn+1 −Axn+1

∥∥2 ≤ ∥Axn −Axn+1 ∥2 + γ2L∥TnAxn −Axn∥2

+ 2 ⟨Axn −Axn+1 , AγA
∗(Tn − I)Axn⟩+ (1 + k)αn∥zn∥2

+ 2αnk
〈
Tn+1 Axn+1 −Axn+1 ,−zn

〉
+ 2αn ⟨Aun − TnAxn+1 ,−zn⟩

+ ∥Ayn −Axn+1 ∥2 + 2
〈
Tn+1 Axn+1 −Ayn, Ayn −Axn+1

〉
.
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Thus, the fact that (1− k) > 0 and noticing that γ2L < (1− k)2 , we deduce that∥∥Tn+1 Axn+1 −Axn+1
∥∥2 ≤ ∥Axn −Axn+1 ∥2 + (1− αn)∥TnAxn −Axn∥2

+ αn∥TnAxn −Axn∥2

+
1

1− k
⟨Axn −Axn+1 , AγA∗(Tn − I)Axn⟩

+ (1 + k)αn∥zn∥2 +
2αnk

1− k

〈
Tn+1 Axn+1 −Axn+1 ,−zn

〉
+

2αn

1− k
⟨Aun − TnAxn+1 ,−zn⟩+ ∥Ayn −Axn+1 ∥2

+
2

1− k

〈
Tn+1 Axn+1 −Ayn, Ayn −Axn+1

〉
. (3.53)

This implies that

ξn+1 ≤ (1− βn)ξn + ηn,

where

ξn = ∥TnAxn −Axn∥2
,

βn = αn and

ηn = αnM∥zn∥+ αn ∥TnAxn −Axn∥2
+ ∥Ayn −Axn+1 ∥2

+ ∥Axn −Axn+1 ∥2 +
2

1− k

〈
Tn+1 Axn+1 −Ayn, Ayn −Axn+1

〉
+

1

1− k
⟨Axn −Axn+1 , AγA

∗(Tn − I)Axn⟩ .

where M is chosen appropriately such that

2k

1− k

∣∣〈Tn+1 Axn+1 −Axn+1 ,−zn
〉∣∣+ 2

1− k
|⟨Aun − TnAxn+1 ,−zn⟩|

+ (1 + k)∥zn∥ ≤ M∥zn∥.
Clearly, lim

n→∞
βn = 0,

∑
βn = ∞, and lim

n→∞
ηn

βn
≤ 0. Thus, by Lemma 2.8, we deduce that

lim
n→∞

∥TnAxn −Axn∥ = 0. (3.54)

On the other hand,

∥Un+1 un+1 − un+1 ∥2 = ∥Un+1 un+1 − yn∥2 + ∥un+1 − yn∥2

+ 2
〈
Un+1 un+1 − yn, yn − un+1

〉
. (3.55)

Let Un+1 un+1 = Unun+1 + wn, where wn =
∑N

s=1 (λn+1
s − λn

s )Usun+1 . The fact that
each Un is k-strictly pseudocontractive mapping, it follows that

∥Un+1 un+1 − yn∥2 = ∥Unun+1 − yn∥2 + 2 ⟨Unun+1 − yn, wn⟩+ ∥wn∥2

≤ ∥un+1 − yn∥2 + k∥Unun+1 − un+1 ∥2

+ 2 ⟨Unun+1 − yn, wn⟩+ ∥wn∥2

≤ ∥un+1 − yn∥2 + k∥Un+1 un+1 − un+1 ∥2 + (1 + k)∥wn∥2

+ 2 ⟨Unun+1 − yn, wn⟩+ 2k
〈
Un+1 un+1 − un+1 ,−wn

〉
.
(3.56)
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On the other hand,

∥un+1 − yn∥2 ≤ ∥un+1 − un∥2 − (1− αn)(αn − k)∥Unun − un∥2 (3.57)

and

∥un+1 − un∥2
= ∥xn+1 − xn∥2 + ∥γA∗(Tn+1 − I)Axn+1 − γA∗(Tn − I)Axn∥2

+ 2
〈
xn+1 − xn, γA

∗(Tn+1 − I)Axn+1 − γA∗(Tn − I)Axn

〉
.
(3.58)

From (3.54) and the fact that {xn} is Cauchy, it follows from (3.58) that

lim
n→∞

∥un+1 − un∥ = 0. (3.59)

From (3.56) and (3.57), we have

∥Un+1 un+1 − yn∥2 ≤ k∥Un+1 un+1 − un+1 ∥2 + ∥un+1 − un∥2

− (1− αn)(αn − k)∥Unun − un∥2 + (1 + k)∥wn∥2

+ 2 ⟨Unun+1 − yn, wn⟩+ 2k
〈
Un+1 un+1 − un+1 ,−wn

〉
.
(3.60)

By substituting (3.60) into (3.55) and the fact that k < 1, we have

(1− k)∥Un+1 un+1 − un+1 ∥2 ≤ ∥un+1 − un∥2 + (1− αn)∥Unun − un∥2

+ (1 + k)∥wn∥2 + ∥un+1 − yn∥2

+ 2 ⟨Unun+1 − yn, wn⟩
+ 2k

〈
Un+1 un+1 − un+1 ,−wn

〉
+ 2

〈
Un+1 un+1 − yn, yn − un+1

〉
. (3.61)

By (3.61) and the fact that (1− k) > 0, we have that

∥Un+1 un+1 − un+1 ∥2

≤ (1− αn)∥Unun − un∥2 + ∥un+1 − un∥2

+(1 + k)∥wn∥2 + ∥un+1 − yn∥2

+
2

1− k

(
⟨Unun+1 − yn, wn⟩+ 2k

〈
Un+1 un+1 − un+1 ,−wn

〉 )
+2∥Un+1 un+1 − yn∥∥yn − un+1 ∥. (3.62)

This implies that

ξn+1 ≤ (1− βn)ξn + ηn,

where

ξn = ∥Unun − un∥2
,

βn = αn and

ηn = M1∥wn∥+ ∥un+1 − un∥2 +M2∥un+1 − un∥,
where M1 and M2 are chosen appropriately such that

(1 + k)∥wn∥+
2

1− k
| ⟨Unun+1 − yn, wn⟩ |+

2k

1− k
|
〈
Un+1 un+1 − un+1 ,−wn

〉
|

≤ M1∥wn∥
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and
2∥Un+1 un+1 − yn∥∥yn − un+1 ∥ ≤ M2∥yn − un+1 ∥.

From (3.48) and (3.54), we have that

lim
n→∞

∥yn − un+1 ∥ = 0.

Clearly, that lim
n→∞

βn = ∞,
∑

βn = 0 and lim
n→∞

ηn

βn
≤ 0. Thus, by Lemma (2.8), we deduce

that
lim
n→∞

∥Unun − un∥ = 0.

This completes the proof of Equation (3.46). Following the same steps as in the proof of
Equation (3.29) and together with Equation (3.46), we deduce that

lim
n→∞

∥TAxn −Axn∥ = 0 and lim
n→∞

∥Uun − un∥ = 0. (3.63)

Finally, we show that xn → x∗. Since {xn} is a Cauchy sequence, we assume that xn → x∗.
By (3.45) and the fact that the lim

n→∞
∥TAxn − Axn∥ = 0, we have that un → x∗, this

implies that un ⇀ x∗. The fact that lim
n→∞

∥Uun−un∥ = 0 together with the demiclosedness

of (U − I) at zero, we deduce that x∗ ∈ Fix(U).
On the other hand, by the definition of A and xn → x∗, we have that Axn → Ax∗,

this implies that Axn ⇀ x∗. The fact that lim
n→∞

∥TAxn − Axn∥ = 0 together with the

demiclosedness of (T − I) at zero, we deduce that Ax∗ ∈ Fix(T ). Hence, x∗ ∈ Γ, this
show that xn → x∗. This completes the proof.

3.3. Cyclic Algorithm

Theorem 3.6. Let Tr : H1 → H1 , and Ur : H2 → H2 for r = 1, 2, 3, ...,M be kr−strictly
pseudocontractive mappings with 0 ≤ kr < 1, and let k = max{kr, 1 ≤ r ≤ M}, A :
H1 → H2 be a bounded linear operator with its adjoint A∗. Assume that, for N = M, the
solution set Γ of Problem (1.20) is nonempty, and let {xn} be the sequence generated by x1 ∈ H1 ;

un = xn + γA∗(T[n] − I
)
Axn,

xn+1 = αnun + (1− αn)U[n]un,∀n ≥ 1,
(3.64)

where [n] = n(modM) with mod function taking values in {1, 2, 3, ...,M}, k < αn < 1
and γ ∈ (0, 1−k

L ) with L = ∥AA∗∥. Then xn ⇀ x∗ ∈ Γ.

Proof. First, we show that {xn} is Fejer monotone with respect to Γ. Let x∗ ∈ Γ, following
the same steps as in the proof of Theorem 3.1, in particular Equation (3.4), we obtain
that

∥xn+1 − x∗∥2 ≤ ∥xn − x∗∥2 − γ(1− k − γL)∥T[n]Axn −Axn∥2

− (αn − k)(1− αn)
∥∥U[n]un − un

∥∥2
. (3.65)

Thus, {xn} is Fejer monotone,
∞∑

n=1

∥T[n]Axn −Axn∥2 < ∞ and
∞∑

n=1

∥U[n]un − un∥2 < ∞.

In particular, we have

lim
n→∞

∥∥U[n]un − un

∥∥ = 0 and lim
n→∞

∥∥T[n]Axn −Axn

∥∥ = 0.
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Finally, we show that xn ⇀ x∗. To show this, it suffices to show that ωω ⊂ Γ (see Lemma
2.3). Let x ∈ ωω(xn), this implies that there exists a sub-sequence {xnk

} of {xn} such
that xnk

⇀ x. Let r ∈ {1, 2, 3, ...,M} such that [nk] := r for all k. By continuity of A, we
have Axnk

⇀ Ax. It turns out that

∥TrAxnk
−Axnk

∥ =
∥∥T[nk]Axnk

−Axnk

∥∥ → 0.

By demiclosedness of (Tr − I) at zero, we deduce that Ax ∈ Fix(Tr). Similarly, from the
fact that xnk

⇀ x, it follows that unk
⇀ x. By demiclosedness of (Ur − I) at zero, we

also deduce that Urx = x which implies that x ∈ Fix(Ur). Hence, x ∈ Γ. This implies
that ωω ⊂ Γ. By uniqueness of limit and Lemma 2.3, we conclude that xn ⇀ x∗. This
completes the proof.

Theorem 3.7. Let Tr : H1 → H1 and Ur : H2 → H2 for r = 1, 2, 3, ...,M be kr−strictly
pseudocontractive mappings with 0 ≤ kr < 1, and let k = max{kr, 1 ≤ r ≤ M}, A : H1 →
H2 be a bounded linear operator with its adjoint A∗. Assume that for N = M, Γ ̸= ∅, and
let {xn} be the sequence defined by

x1 ∈ C1 ,
yn = αnun + (1− αn)U[n]un,
un = xn + γA∗(T[n] − I

)
Axn,

Cn+1 =
{
z ∈ Cn : ∥yn − z∥2 ≤ ∥un − z∥2 ≤ ∥xn − z∥2

}
,

xn+1 = PCn+1(x1),∀n ≥ 1,

(3.66)

where [n] = n(modM) with mod function taking values in {1, 2, 3, ...,M}, k < αn < 1
and γ ∈ (0, 1−k

L ) with L = ∥AA∗∥. Then xn ⇀ x∗ ∈ Γ.

Proof. The proof of this theorem follows directly from Theorem 3.4 by replacing U[n] with
U and T[n] with T as in Algorithm (3.33).

The split common fixed point Problem (1.5) can be viewed as a special case of the
common fixed point Problem (1.4), since (1.5) can be written as

x∗ ∈
N+ M⋂
s=1

Fix(Us), (3.67)

where Fix(UN+ r) :=
{
x∗ ∈ H : x∗ ∈ A−1(Fix(Tr)), for 1 ≤ r ≤ M

}
. By taking γ = 0

in Theorem 3.2, 3.3 and 3.4, we obtain the following corollaries.

Corollary 3.8. Let U : H → H be a k−strictly pseudocontractive mapping with k ∈ [0, 1).
Assume that the common fixed point U is nonempty, and let {xn} be the sequence defined
by {

x0 is chosen arbitrarily ,
xn+1 = αnxn + (1− αn)Uxn,∀n ≥ 0,

(3.68)

where k < αn < 1 and
∑

(αn − k)(1− αn) = ∞. Then {xn} converges weakly to the
common fixed point of U.

Proof. The proof of this corollary follows trivially from Theorem 3.1 by taking γ = 0.
Algorithm (3.68) is known as Mann algorithm, see [16].
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Corollary 3.9. (Acedo and Xu [10]) Let Us : H → H be a ks−strictly pseudocontractive
mapping with 0 ≤ ks < 1 and let k = max{ks, 1 ≤ s ≤ N} where N ≥ 1. Assume that

the common fixed set
⋂N

s=1 Fix(Us) is nonempty, and let {βs}Ns=1 be a finite sequence of

positive numbers such that
∑N

s=1 βs = 1. Let also {xn} be the sequence generated by{
x0 is chosen arbitrarily;

xn+1 = αnxn + (1− αn)
∑N

s=1 βsUsxn,∀n ≥ 0,
(3.69)

where k < αn < 1 for all n, and
∑N

s=1 (αn − k)(1− αn) = ∞. Then {xn} converges
weakly to a common fixed point of {Us}Ns=1 .

Corollary 3.10. (Acedo and Xu [1]) Let Us : H → H be a ks−strictly pseudocontractive
mapping with 0 ≤ ks < 1, and let k = max{ks, 1 ≤ s ≤ N} where N ≥ 1. Assume that

the common fixed set
⋂N

s=1 Fix(Us) is nonempty, and let {βs}Ns=1 be a finite sequence

of positive numbers such that
∑N

s=1 βn
s = 1 for all n and inf

n≥1
βn
s . Let also {xn} be the

sequence defined by{
x0 is chosen arbitrarily;

xn+1 = αnxn + (1− αn)
∑N

s=1 βn
s Usxn,∀n ≥ 0,

(3.70)

where k < αn < 1 for all n, such that
∑

(αn − k)(1− αn) = ∞ and∑√∑N
s=1 |βn+1

s − βn
s | < ∞. Then {xn} converges weakly to a common fixed point of

{Us}Ns=1 .

Corollary 3.11. Let C1 be a nonempty closed convex subset of H1 , Tr : C1 → H1 , 1 ≤ r ≤
M, be kr−strictly pseudocontractive mappings with 0 ≤ kr < 1. Let k = max{kr, for r =
1, 2, 3, ...,M} such that for all n, k < αn < 1. Assume that the common fixed set⋂M

r=1 Fix(Ur) is nonempty and let {λr}Mr=1 be finite sequence of positive number such

that
∑M

r=1 λr = 1. Let also {xn} be the sequence generated by
x1 ∈ C1 ,

yn = αnxn + (1− αn)
∑M

r=1 λrUrxn,

Cn+1 =
{
z ∈ Cn : ∥yn − z∥2 ≤ ∥xn − z∥2

}
,

xn+1 = PCn+1
(x1),∀n ≥ 1.

(3.71)

Then {xn} converges strongly to a common fixed point of {Ur}Mr=1 .

Corollary 3.12. Let Tr : H → H for r = 1, 2, 3, ...,M be kr−strictly pseudocontractive
mappings with 0 ≤ kr < 1, and let k = max{kr, 1 ≤ r ≤ M}. Assume that the common

fixed set
⋂M

r=1 Fix(Ur) is nonempty and let {xn} be the sequence generated by{
x1 ∈ H1 ;
xn+1 = αnxn + (1− αn)U[n]xn,∀n ≥ 1,

(3.72)

where [n] = n(modM) with mod function taking values in {1, 2, 3, ...,M}, k < αn < 1.
Then {xn} converges weakly to a common fixed point of {Ur}Mr=1 .

Corollary 3.13. Let C1 be a nonempty closed convex subset of H1 , Tr : C1 → H1 , 1 ≤ r ≤
M, be kr−strictly pseudocontractive mappings with 0 ≤ kr < 1. Let also k = max{kr, r =
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1, 2, 3, ...,M}. Assume that the common fixed set
⋂M

r=1 Fix(Ur) is nonempty, and let {xn}
be the sequence generated by

x1 ∈ C1 ,
yn = αnxn + (1− αn)U[n]xn,

Cn+1 =
{
z ∈ Cn : ∥yn − z∥2 ≤ ∥xn − z∥2

}
,

xn+1 = PCn+1(x1), ∀n ≥ 1,

(3.73)

where [n] = n(modM) with mod function taking values in {1, 2, 3, ...,M}, k < αn < 1.
Then {xn} converges strongly to a common fixed point of {Ur}Mr=1 .

Remark 3.14. By taking k = 0 in (1.9), we immediately obtained Equation (1.10) which
is known as nonexpansive mapping. In Theorem 3.1, 3.2 and 3.3, as U and T are two
nonexpansive mappings, we can also obtain similar results.

4. Application to Variational Inequality Problems

Let T : C → H1 be a nonlinear mapping. The variational inequality problem with
respect to C consists as finding a vector x∗ ∈ C such that

⟨Tx∗, x− x∗⟩ ≥ 0, ∀ x ∈ C. (4.1)

We denote the solution set of variational inequality problem (4.1) by V I(T,C). It is easy
to see that

x∗ ∈ V I(T,C) if and only if x∗ ∈ Fix(PC(I − βT )), (4.2)

where PC is the metric projection from H1 onto C and β is a positive constant. Let
Q := Fix(PC(I − βT )) (the fixed point set of PC(I − βT )) and A = I (the identity
operator on H1), then Equation (4.1) can be written as;

find x∗ ∈ C such that Ax∗ ∈ Q. (4.3)

Hence, as the consequence of Theorem 3.4, we have the following theorem.

Theorem 4.1. Let C1 be a nonempty closed convex subset of H1 , Tr : C1 → H1 , 1 ≤
r ≤ M, and Us : H2 → H2 , 1 ≤ s ≤ N be family of nonexpansive mappings. Assume
that Γ ̸= ∅, and let {λs}Nr=1 and {βr}Mr=1 be finite sequences of positive numbers such that∑N

s=1 λs = 1 and
∑M

r=1 βr = 1, and also let {xn} be the sequence generated by

x1 ∈ C1 ,

yn = αnun + (1− αn)
∑N

s=1 λsUsun,

un = xn + γ
(∑M

r=1 βrTr − I
)
xn,

Cn+1 =
{
z ∈ Cn : ∥yn − z∥2 ≤ ∥un − z∥2 ≤ ∥xn − z∥2

}
,

xn+1 = PCn+1
(x1),∀n ≥ 1,

(4.4)

where 0 < αn < 1 and γ ∈ (0, 1). Then {xn} converges strongly to a solution of Problem
(4.3).

Proof. Since U and T are nonexpansive, then they are k−strictly pseudocontractive map-
ping with k = 0. Therefore, all the hypothesis of Theorem 3.4 are satisfied. Hence, the
proof of this theorem follows directly from Theorem 3.4.
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Remark 4.2. The results presented in this paper, not only extend the results of Browder
and Petryshyn [5], Acedo and Xu [1] and Marino and Xu [16] but also extend, improve
and generalize several well-known results announced.

5. Numerical Example

In this section, we illustrate the convergence result of Theorem 3.1. Furthermore, we
compare the convergence rate of Algorithm 3.1 with that of Browder and Petryshyn [5].
The following is an example of strictly pseudocontractive mappings.

Example 5.1. Let H1 = R and H2 = R, C := [0,∞), and Q := [0,∞) be a subset of H1
and H2 , respectively. Define T : C → C by Tx = x+2

3 for all x ∈ C and U : Q → Q by

Ux =


2x

x+ 1
, ∀x ∈ (1,∞)

0, ∀x ∈ [0, 1].
(5.1)

Then, U and T are k−strictly pseudocontractive mappings. For any x, y ∈ C, we have
that

∥Tx− Ty∥2
=

1

4
∥x− y∥2 ≤ ∥x− y∥2

+ k∥(x− Tx)− (y − Ty)∥2 .

Also, for any x, y ∈ Q, we have that

∥Ux− Uy∥2
=

2

(1 + x)(1 + y)
∥x− y∥2 ≤ ∥x− y∥2

+ k∥(x− Ux)− (y − Uy)∥2 .

Thus, U and T are k−strictly pseudocontractive mappings.

Example 5.2. Let H1 = R and H2 = R, C := [0,∞), and Q := [0,∞) be subset of H1
and H2 , respectively. Define T : C → C by Tx = x+2

3 for all x ∈ C, and U : Q → Q by

Ux =


2x

x+ 1
, ∀x ∈ (1,∞)

0, ∀x ∈ [0, 1].
(5.2)

Let also Ax = x, γ = 1
4 , αn = α = 1

5 and {xn} be the sequence defined by
x0 ∈ H1 is chosen arbitrarily,
un = xn + 1

4 A
∗(T − I

)
Axn,

xn+1 = 1
5 un + (1− 1

5 )Uun,∀n ≥ 0,
(5.3)

Then {xn} converges to 1 ∈ Γ.

Proof. By Example 5.1, U and T are k−strictly pseudocontractive mappings with Fix(U) =
1 and Fix(T ) = 1, respectively. Clearly, A is bounded linear on R, and A = A∗ = 1.
Hence,

Γ = {1 ∈ Fix(T ) such that A(1) ∈ Fix(U)}.
After simplifying (5.3), we have

x0 ∈ H1 is chosen arbitrarily,
un = 3xn

4 + xn+2
12 ,

xn+1 = un

5 + 8un

5(1+ un) ,∀n ≥ 0.
(5.4)
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Table 1. Numerical results of Example 5.3. Starting with initial values
x0 = 10 and y0 = 10.

Algorithm 5.3 Algorithm of [5]

n xn yn
0 10 10
1 3.131578947 5.200000000
2 1.731569779 2.960000000
3 1.308817257 1.914666666
. . .
. . .
14 1.000129227 1.000209092

Figure 1. The convergence of {xn} for Algorithm 5.3 and {yn} for the
algorithms given in [5] with initial values x0 = 10 and y0 = 10.

Table 2. Numerical results of Example 5.3. Starting with initial values
x0 = −10 and y0 = −10.

Algorithm 5.3 Algorithm of [5]

n xn yn
0 -10 -10
1 0.189922481 -4.133333333
2 0.4573810348 -1.395555556
3 0.6758499252 -0.1179259262
. . .
. . .
14 0.9998056078 0.9997444430
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Figure 2. The convergence of {xn} for Algorithm 5.3 and {yn} for the
algorithms given in [5] with initial values x0 = −10 and y0 = −10.

Remark 5.3. Table 1 and Figure 1 show that {xn} and {yn} converge to 1 ∈ Γ. It also
indicates that the convergence of Algorithm 5.3 is faster than those algorithms given in [5].
Similarly, Table 2 and Figure 2 show that {xn} and {yn} converge to 1 ∈ Γ. Furthermore,
Table 2 indicated that the convergence of Algorithm 5.3 is faster than those algorithms
given in [5].
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