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1. Introduction

As is known to all, the quaternion linear canonical transform (QLCT) is a left linear
integral transformation with three extra parameters and has attracted much attention
from several researchers in both theory and application. Several famous transformations
such as the quaternion Fourier transform (QFT) and the quaternion fractional Fourier
transform (QFrFT) are special forms of the OLCT. In recent years, many works have been
demonstrated to transfer some essential properties of the quaternion Fourier transform
to the quaternion linear canonical transform (see, e.g., [2, 9, 13–15]). In this regard,
the authors [6] have proposed an uncertainty principle associated with the quaternion
Fourier transform, which can be seen as the extension of the uncertainty principle for the
classical Fourier transform. The present work aims to extend this uncertainty principle
within the quaternion linear canonical transform. To achieve this goal, we first remind
the definition of the quaternion linear canonical transform and then present the direct
connection between this transformation and the quaternion Fourier transform and utilize
this relation to obtain the inequality for the quaternion linear canonical transform.

The arrangement for this article is as below. Section 2 contains the basic facts related
to quaternion algebra, that will be useful in the sequel. The definition of the quaternion
Fourier transform (QFT) and essential properties are introduced in Section 3. Section 4
shortly recalls the definition of the quaternion linear canonical transform (QLCT) and its
relation to the quaternion Fourier transform (QFT). Section 5 is devoted to deriving the
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inequality concerning the quaternion linear canonical transform (QLCT). A conclusion is
made in the last section.

2. Quaternion Algebra with Properties

In this section, we present basic notations and results of quaternions that will be
useful for this research. Let H be the associative algebra of real quaternion. Elements of
quaternion algebra H can be represented as [7]

H = {q = q0 + iq1 + jq2 + kq3 | q0, q1, q2, q3 ∈ R},

for which the three imaginary parts {i, j,k} satisfy

i2 = j2 = k2 = ijk = −1. (2.1)

Formula (2.1) tells us in general that quaternion multiplication is not commutative. For
simplicity, denoted q0 = S(q) and V (q) = i q1 + j q2 + k q3 are the scalar and vector
components of quaternion q, respectively. We may write any q ∈ H in the form

q = q0 + q = S(q) + V (q).

The quaternion conjugate q can be expressed in the form q = q0 − q. This gives

qp = p q, p = p, p+ q = p+ q.

For every q ∈ H, we may write the scalar and vector parts in the form

S(q) =
q + q

2
, and V (q) =

q − q

2
.

The module (norm) of quaternion q can be defined as

|q| =
√

qq =
√
q20 + q21 + q22 + q23 .

One can immediately check that for every q, r, p ∈ H it holds

S(q) ≤ |q|, |q| = |V(q)| ≤ |q|, and S(qpr) = S(prq) = S(qpr).

Now we define the quaternion-valued inner product as

(f, g) =

∫
R2

f(x)g(x) dx, dx = dx1dx2

with scalar product

⟨f, g⟩ =
∫
R2

S
(
f(x)g(x)

)
dx = S

(∫
R2

f(x)g(x) dx

)
.

This yields the L2(R2;H)-norm

∥f∥L2(R2;H) =

(∫
R2

|f(x)|2 dx
)1/2

.
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3. Two-Sided Quaternion Fourier Transform

In this part, we start by reminding the definition of the two-sided quaternion Fourier
transform (QFT). We present some inequalities related to this transformation, which
will be needed later. A complete account of the QFT and its properties including the
uncertainty principles, one can consult [1, 3–5, 8, 10–12].

Definition 3.1. The two-sided quaternion Fourier transform for a quaternion function
f in L1(R2;H) is evaluated by

FH{f}(v) =
∫
R2

e−i2πv1x1f(x)e−j2πv2x2 dx, (3.1)

where x,v ∈ R2.

Definition 3.2. For any f ∈ L1(R2;H) for which FH{f} ∈ L1(R2;H), its inverse is
defined by

F−1
H

{
FH{f}

}
(x) = f(x) =

∫
R2

ei2πv1x1FH{f}(v)ej2πv2x2 dv.

Using the decomposition of the quaternion function f , one may rewrite relation (3.1)
in the form

FH{f}(v) =
∫
R2

e−i2πv1x1(fo(x) + ifa(x) + jfb(x) + kfc(x)) e
−j2πv2x2 dx

= FH{fo}(v) + iFH{fa}(v) + FH{fb}(v)j+ iFH{fc}(v)j,

in which

FH{fi}(v) =
∫
R2

e−i2πv1x1fi(x)e
−j2πv2x2 dx, i = o, a, b, c.

Now we introduce the module of FH{f}(v) as

|FH{f}(v)|2H = |FH{fo}(v)|2 + |FH{fa}(v)|2 + |FH{fb}(v)|2 + |FH{fc}(v)|2.

Furthermore, we get the Lp(R2;H)-norm

∥FH{f}∥H,p =

(∫
R2

|FH{f}(v)|pH dv

)1/p

f ∈ Lp(R2;H).

Below we recall the component-wise uncertainty principle for the QFT in the following
results.

Theorem 3.3. For all f ∈ L1(R2;H) ∩ L2(R2;H) such that ∂
xk

f exists, there holds

∫
R2

x2
k|f(x)|2 dx

∫
R2

v2k|FH{f}(v)|2H dv ≥ 1

16π2

(∫
R2

|f(x)|2 dx
)2

, k = 1, 2. (3.2)

It is obvious that for 1 ≤ p ≤ 2 we may change L2-norm to Lp-norm on left-hand side
of (3.2) and obtain the following result.

Theorem 3.4. Under the conditions as above, one gets for k = 1, 2,(∫
R2

xp
k|f(x)|

p dx

)1/p (∫
R2

vpk|FH{f}(v)|pH dv

)1/p

≥ 1

4π

∫
R2

|f(x)|2 dx. (3.3)
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In particular,(∫
R2

xp
k|f(x)|

p dx

)1/p(∫
R2

|FH{f}( v

2π
)|pH dv

)1/p

≥ (2π)1+
2
p

4π

∫
R2

|f(x)|2 dx.

4. Quaternion Linear Canonical Transform (QLCT)

In this section, we recall the definition of the two-sided quaternion linear canonical
transform (QLCT) and study its connection to the quaternion Fourier transform (QFT).
More details have presented in [2, 13–15].

Definition 4.1. Let M1 = (a1, b1, c1, d1) =

[
a1 b1
c1 d1

]
∈ R2×2 and M2 = (a2, b2, c2, d2) =[

a2 b2
c2 d2

]
∈ R2×2 be matrix parameters such that det(M1) = det(M1) = 1. The two-sided

quaternion linear canonical transform of a quaternion function f ∈ L2(R2;H) is defined
through

LQ
M1,M2

{f}(v) =

{∫
R2 KM1(x1, v1)f(x)KM2(x2, v2) dx, for b1b2 ̸= 0
√
d1 e

i
(

c1d1
2

)
v2
1f(d1v1, d2v2)

√
d2 e

j
(

c2d2
2

)
v2
2 , for b1b2 = 0,

(4.1)

where

KM1
(x1, v1) =

1√
2πb1

e
i
2

(
a1
b1

x2
1− 2

b1
x1v1+

d1
b1

v2
1−π

2

)
,

and

KM2(x2, v2) =
1√
2πb2

e
j
2

(
a2
b2

x2
2− 2

b2
x2v2+

d2
b2

v2
2−π

2

)
.

denote the QLCT kernel functions.

In this work, we consider Definition 4.1 in the case of b1b2 ̸= 0. Especially, when
M1 = M2 = (ai, bi, ci, di) = (0, 1,−1, 0) with i = 1, 2, the two-sided QLCT definition
(4.1) boils down to the two-sided QFT definition:

LQ
M1,M2

{f}(v) =
∫
R2

e−iπ4
√
2π

e−iv1x1 f(x)e−jv2x2
e−jπ4
√
2π

dx =
e−iπ4
√
2π

FH{f}
( v

2π

) e−jπ4
√
2π

. (4.2)

where FH{f} is defined by (3.1). From equation (4.2), we infer that

2π
∣∣∣LQ

M1,M2
{f}(v)

∣∣∣ = ∣∣∣FH{f}
( v

2π

)∣∣∣ .
The inverse transform of the two-sided QLCT (4.1) above is computed by

f(x) =
(
LQ
M1,M2

)−1[LQ
M1,M2

{f}
]
(x)

=
1

2π
√
b1b2

∫
R2

e−
i
2 (m1)LQ

M1,M2
{f}(v)e−

j
2 (m2) dv,

where mi =
ai

bi
x2
i − 2

bi
xivi +

di

bi
v2i − π

2 , i = 1, 2, provided that the integral exists.

By virtue of (4.1), we have

LQ
M1,M2

{f}(v)

=

∫
R2

e−iπ4
√
2πb1

ei
d1
2b1

v2
1e−i

x1v1
b1 ei

a1
2b1

x2
1f(x)

e−jπ4
√
2πb2

ej
d2
2b2

v2
2e−j

x2v2
b2 ej

a2
2b2

x2
2 dx.
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It is straightforward to verify that the connection between the two-sided QFT and the
two-sided QLCT is given by√

2πb1 e
iπ4 e−i

d1
2b1

v2
1LQ

M1,M2
{f}(v)e−j

d2
2b2

v2
2

√
2πb2 e

jπ4 = FH{f̌}
(
v1
b1

,
v2
b2

)
= FH{f̌}

(v
b

)
, (4.3)

where

f̌(x) = ei
a1
2b1

x2
1f(x)ej

a2
2b2

x2
2 . (4.4)

For every f ∈ L2(R2;H), there holds∫
R2

∣∣∣LQ
M1,M2

{f}(v)
∣∣∣2 dv =

∫
R2

|f(x)|2 dx,

which is usually called Parseval’s theorem for the two-sided QLCT.

5. Inequality for QLCT

Now we are in a position to prove inequalities concerning the QLCT, which are the
main results of this paper.

Theorem 5.1. Under the same assumptions as in Theorem 3.3, one has(∫
R2

xp
k|f(x)|

p dx

)1/p (∫
R2

vpk
∣∣LQ

M1,M2
{f}(v)

∣∣p
H
dv

)1/p

≥ bk|b1b2|
1
p−

1
2

8π2

∫
R2

|f(x)|2 dx, k = 1, 2. (5.1)

Proof. Upon replacing f(x) by f̌(x) as in (4.4) on both sides of (3.3), we get(∫
R2

xp
k|f̌(x)|

p dx

)1/p (∫
R2

vpk|FH{f̌}(v)|pH dv

)1/p

≥ 1

4π

∫
R2

|f̌(x)|2 dx. (5.2)

Setting v = v
b , we have

(∫
R2

xp
k|f̌(x)|

p dx

)1/p(∫
R2

vpk
bpk

1

|b1b2|

∣∣∣FH{f̌}
(v
b

)∣∣∣p
H

dv

)1/p

≥ 1

4π

∫
R2

|f̌(x)|2 dx.

(5.3)

By inserting (4.3) and (4.4) into equation (5.3) we obtain(∫
R2

xp
k

∣∣ei a1
2b1

x2
1f(x)ej

a2
2b2

x2
2
∣∣p dx)1/p (∫

R2

vpk
bpk

1

|b1b2|
∣∣√2πb1 e

iπ4 e−i
d1
2b1

v2
1

× LQ
M1,M2

{f}(v)e−j
d2
2b2

v2
2

√
2πb2 e

jπ4
∣∣p
H
dv

)1/p

≥ 1

4π

∫
R2

∣∣ei a1
2b1

x2
1f(x)ej

a2
2b2

x2
2
∣∣2 dx.
(5.4)
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Simplifying it yields(∫
R2

xp
k|f(x)|

p dx

)1/p (∫
R2

vpk
bpk

|b1b2|
p
2−1

∣∣2πLQ
A1,M2

{f}(v)
∣∣p
H
dv

)1/p

≥ 1

4π

∫
R2

|f(x)|2 dx.

We further obtain(∫
R2

xp
k|f(x)|

p dx

)1/p

|b1b2|
1
2−

1
p

(∫
R2

vpk
∣∣2πLQ

M1,M2
{f}(v)

∣∣p
H
dv

)1/p

≥ bk
4π

∫
R2

|f(x)|2 dx,

which is the same as(∫
R2

xp
k|f(x)|

p dx

)1/p (∫
R2

vpk
∣∣LQ

M1,M2
{f}(v)

∣∣p
H
dv

)1/p

≥ bk|b1b2|
1
p−

1
2

8π2

∫
R2

|f(x)|2 dx,

and the proof is complete.

Theorem 5.2. If f ∈ L1(R2;H) ∩ L2(R2;H) and LQ
M1,M2

{f} exists and is also in

L2(R2;H), then(∫
R2

(xp
1 + xp

2)|f(x)|p dx
)1/p(∫

R2

(
vp1
bp1

+
vp2
bp2

)∣∣LQ
M1,M2

{f}(v)
∣∣p
H
dv

)1/p

≥ 2−2p+1

πp+1
|b1b2|

1
p−

1
2

(∫
R2

|f(x)|2 dx
)p

,

for 1 ≤ p ≤ 2.

Proof. Using the procedure as in equations (5.2), (5.3), and (5.4), we obtain(∫
R2

(xp
1 + xp

2)|f(x)|p dx
)1/p(

|b1b2|−1

∫
R2

(
vp1
bp1

+
vp2
bp2

)∣∣FH{f̌}(v
b
)
∣∣p
H
dv

)1/p

≥ 4

(4π)p

(∫
R2

|f(x)|2 dx
)p

.

Consequently,(∫
R2

(xp
1 + xp

2)|f(x)|p dx
)1/p

|b1b2|
1
2−

1
p

(∫
R2

(
vp1
bp1

+
vp2
bp2

)∣∣2πLQ
M1,M2

{f}(v)
∣∣p
H
dv

)1/p

≥ 4

(4π)p

(∫
R2

|f(x)|2 dx
)p

.

This yields(∫
R2

(xp
1 + xp

2)|f(x)|p dx
)1/p(∫

R2

(
vp1
bp1

+
vp2
bp2

)∣∣LQ
M1,M2

{f}(v)
∣∣p
H
dv

)1/p

≥ 2−2p+1

πp+1
|b1b2|

1
p−

1
2

(∫
R2

|f(x)|2 dx
)p

.
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The proof is complete.

Remark 5.3. It should be noticed that in the case ofM1 =

[
0 1
−1 0

]
andM2 =

[
0 1
−1 0

]
,

equation (5.1) turns into equation (3.3).

6. Conclusion

In this paper, we have introduced the quaternion Fourier transform and the quaternion
linear canonical transform. We have presented an inequality related to the quaternion
Fourier transform and generalized within the quaternion linear canonical transform.
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