\\LBE,

A 0) Hilbert Journal of Mathematical Analysis

JMA Volume 1 Number 2 (2023)
Pages 065-076

https://hilbertjma.org

ISSN  2985-761 9

A Note on Euclidean Spaces R" and n-Normed Spaces

Mochammad Idris

Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lambung Mangkurat,
Banjarbaru 70714, Indonesia
e-mail: moch.idris@ulm.ac.id

Abstract This article gives us a relation between Euclidean space R™ and a subspace of X (an n-normed
space) using properties of the determinant of square matrices. We can calculate the n-norm of n vectors
in the subspace in a simpler way, from the product of a constant and an n-norm of other n vectors. Some
functionals will be investigated in these spaces. Furthermore, we also define a norm induced from an

inner product on the subspace.

MSC: 46C05; 47A30; 47B38

Keywords: Inner Product, Norm, n-Norm

Received: 24-02-2023 / Accepted: 27-04-2023 / Published: 05-05-2023
DOI : https://doi.org/10.62918/hjma.v1i2.9

1. Introduction

Many functionals can be well defined on R™. Usually, at the beginning of a study about
vector spaces, we use R™, cause especially for n = 2 or n = 3, the visual graphic and the
geometric interpretation of these spaces are still relatively easy. In vector spaces, we will

discuss one of the interesting functionals. By [6], we recall the definition of an n-norm on
a real vector space X, with dim(X) > n. It is a mapping ||-,...,: ]| : X x--- x X — R
which satisfies the following four conditions:
(1) ||lz1,- -+ ,n|| > 0 holds for every ay,...,z, € X;
lz1, -+ ,z,|| =0 if and only if x,,...,x, are linearly dependent;
(2) ||lz1,- -+ @y is invariant under permutation;
(3) llaxy,--- x| = |a|||z1,- - -, x| holds for every xy,--- ,x, € X and for every
scalar a € R;
4) |z, yxn_1,y+ 2| < |lz1, - s@n—1,yl + |21, -, Zn_1, 2| holds for every
T1,22,-3Tn—1,Y,2 € X.
Now we call that the pair (X,|-,---,-||) is an n-normed space. We have known that the

geometrical interpretation of the n-norm is the volume of the n-dimensional parallelepiped
spanned by n elements of vector spaces. The development of the theory of n-normed
spaces, with n = 2, was started in the late 1960s. Géahler had an idea to generalize an
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area in a real vector space. He was an initiator and first introduced it (see [3, 1]). We
also see some recent results in [6, 9, 10].

In this article, we will investigate the relation between a subspace of X (as n-normed
space) and R™. We will use the n-norm properties optimally. In addition, knowledge of
square matrices and its determinant also plays an important role.

2. Main Results

Here, we give an n-normed space X = (X, ||,---,-||). Next, suppose that a fixed n
linearly independent vectors, namely

G={g1,- ", gn} C X. (2.1)
Now, one may take a subspace of X as follows
Y := span(G). (2.2)

By taking h € Y, we can find ¢, = (c1p, -+, cnn) € R™ such that h = ¢1pg1 + -+ + Cungn
holds. See again n-normed space X and based on the properties of n-norm, we get the
following property.

Lemma 2.1. Let X be an n-normed space. If fi, f>, -+, fn € X, then we have
”fl +afi, a0 ﬂfn” = ||f17f27"' 7fn||
for every i =2,3,--- ,n and for every a € R.

Proof. Suppose that X is an n-normed space. Take an arbitrary fi, fo,---, fn € X and
a € R. By triangle inequality of n-normed and homogenity

Hfl +afi7f27"' afn” SHflafZa"' aan +|Oé‘ Hfi)fZW" 7fn||
where i € {2,3,--- ,n}. Consequently, ||fi, f2, -, fall =0, so
i +afisfor full < M fas foeo s Sl

We also obtain

||f17f2a 7fn|| :H(fl +afl) _afwaa 7fn||
< Hfl +O[fi7f27"' af’VLH =+ |O[‘ Hfi?fzv"' 7fn||
:Hfl +O‘fi7f23"' 7fn” .

Hence ||f1 +afiaf27"' afn” = ||flaf2a"' 7fn|| |

Lemma 2.1 is equivalent to

A+Y fif o fn

=2

=|lfi, for - full- (2.3)

In fact, this form is used in proving the Proposition 2.2 and some propositions below
directly. We can see this one as a corollary of Lemma 2.1.
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2.1. Scalar by The Determinant of A Square Matrix

In this subsection, we work step by step to obtain the general formula. Note that for
b € R, |b| means absolute value of b. Meanwhile, for B,, be real square matrix with
n > 2, |B,| means determinant value of B,,. So, we use abs(|B,|) to say the absolute
value of the determinant of B,,. Now, we start with n = 2 in the following proposition.

Proposition 2.2. Let an n-normed space X, (2.1) and (2.2). If p1,p; € Y with
n n
p1 = Z Cip1 9 and  py = Z Cip2Ji»
=1 i=1

Cipy  Capy
Clpy  Caps

then we have ||p17p27g37"' 7gnH = abS( ) ||917927937"' 7gn|| .

Proof. We consider the above assumptions. Check that p; and p, have

Cpr = [clpl Cpy " cnm] ) Cpa = [Clpz Capy " Cnpz] eR"

such that

n n
P = Z Cip9i and py = Z Cipy Ji-
1=1

i=1

Using Lemma 2.1, check the following

n n
E Cip19i5 E Cip9i, 935" s 9n
1=1 1=1

= ||Cl;01gl + C2p192,C1py 91 + C2p292,93,° " * 7gnH . (24)

||plap2ag3a"' 7gTLH =

See that we obtain [c1p, ¢2p, | and [cip, C2p,] in R? by

Cip 1 + C2p, G2 and Cip, g1 + Copy G-

We have two cases. First case: for cip, g1 + ¢2p,92 and cip,g1 + €2p, g2 be linearly
dependent, we get linearly dependent vectors [c1p, ¢2p,] and [c1p, €2p,] in R%. Now
we have

Cipy  Capy

=0 and |lcip, g1 + C2p1 92, Clpa 1 + C2py92, 935 5 gnl = 0.
Cips  C2ps

Cipy  C2py
Cip, Cap,

Consequently7 ||p17p27g3a e 7gn|| =0 and abs( ) ||glagl7g3a U 791’7,” =0.

Second case: for [clm czpl] and [01p2 czm} be linearly independent in R2. It can be

checked that zl”l 22”1 # 0 holds. Since ¢ip, g1 + C2p1 92, C1pa 1 + C2p392: 93+ > Gn—1
1p2 2p2
and g, are linearly independent, then ||cip, g1 + ¢2p, 92, Cips 1 + C2p,92, 93, , gnll # O.

Here without losing generality, let ¢, 7# 0 and define
K= ”Cl;mgl + C2p1925 Cipy g1 + C2p292,93,° " * 79%” .

Next, we multiply with |e1,, |

|Clpl|’C = Hclplgl + C2p1 92, C1py (Clp291 + 02p292)ag37 to agnH

= ”clplgl + C2p1 925 Clp, (Clplgl + cZPlgz) + (CIP102;D2 - Clp202p1)927g37 te 7971”
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By Lemma 2.1 and homogenity property of n-norm, we obtain

& C
|Clpl|,C — abs < Clp1 2p1 ) ||Clp1gl + 02p1927927937 tee 7gn||
1p2  C2py

= Clpl CzPl ...
- |61Pl|abS < Clps Caps > ”gla927g37 7gn|| .

Two sides are divided by |c1p, |, so K = abs ( Cip 2 ) g1, 92,95, 5 gnll-

Cips  C2py
C C
We conclude p17p2793a"'agn||_abs< e 2P )|91,92,93a"'7gn”~ L]
Cipy Cops,

The coefficients from p; and p, can be taken out of the n-norm and become a con-
stant. The constant is obtained from the absolute value of the matrix determinant of the
coefficients. Now we recall that the determinant has property

Cipy +b1 p, 0 Gy Cipy  Capy C2py by cp,
Clp, b2 Copy o0 Capy Clp, Cpy *° Cpy| |bo Copy o0 Cop,
Clpn + bn czpn e Czpn Clpn CZPn T czpn bn czpn e Czpn

Next, we continue with n = 3. Since it is getting a bit complicated, we have to prepare

it by presenting this lemma.
Clpr  CGp1 G3py

Lemma 2.3. Let a real square matriz Sz := | Cip, Cop, C3p, |, and
Cips Caps C3pg
. Cipr  Capy . Cipr  G3py . Cipr  Capy . Cipr  C3py
A2 = s A3 = y B2 = s B3 =
Cips  C2p, Clpy  C3p, Cips Caps Cips C3ps
Ay A
We have = c1p, |S3].
B, B; 1P1‘ 3|
Proof. Suppose that S; and A;, B; with ¢ = 2,3 as above. Next, check that
Ay As| _ (cipiCaps — CopiCip,)  As — e, P As ey |CP2 As
- - p1 P1
B, B; (CipiCaps — CopiClps) Bs Crps DB Clp, DBs
Meanwhile, we obtain
Capy As| _ |Capy  (CipiCapy — CipyCapy)| _ Cp,  Capa| Capy  Clipy
c Bs| e (C1p,C3ps — ClpsC )_clplc c G e c
2p3 3 2p3 1p1©3ps 1p3©3p1 2p3 3p3 2p3 1p3
and
Clp, As| _ |Cipy  (C1pyCapy — ClpyCapy) —c Clpy  C3p, — e Cips  Cip
- _ - 1 p1
Cips Bs|  |cips  (CipiCaps — CipsCap) Clps  C3py Clps  Clps

. c c
Since | P2 "'P2| — (), then

Cips Cips
Ay A5 =¢ ¢ Copy  C3py —c Clpy  C3p, c Cips  Cops
—>lp p p p
B, Bs P |eaps Caps "cips  Caps "Cips  Caps

=Cip, |S3| :
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The proof is complete. [

The lemma above tells us how the determinant of the real square matrix n = 3 relates
to the determinant of the real square matrix n = 2. It is very useful and facilitates us in
proving the proposition below.

Proposition 2.4. Let an n-normed space X, (2.1), (2.2), and S; (see Lemma 2.3). If
n n n
P1,p2, 3 €Y with py = Y7 Cip, Gis P2 = Y Cip,Gis and ps = Y Cipygis then
i=1 i=1 i1
||p1ap23p33.g47 T 7gnH = abs(‘83|) ||913927937g47' v ,gn” .
Proof. With all of assumptions, we use Lemma 2.1 to get

||P17P27p37947"' 7gnH

n n n

E C’Zpl 9i, § C’ingia E Cip;;g’ia 94, y09n
i=1 i=1 i=1

3 3 3

E Cip1 9i, E Cipa9is E Cip39i, 94, ,9n
i=1 i=1 i=1

(2.5)

First case: for [01p1 Cap, C3p1], [clm Copy 03p2], and [Clp3 Caps 03p3] be linearly
dependent in R?, we have a trivial case. Check that |S;| = 0 and

3 3 3
E ciplgiv E cipgg’ia E cip3gi7 94, ,9n
i=1 i=1 i=1

Thus, ||p1,p2, 3,94, » gnll = 0 and abs(|Ss|) |g1, 92,93, 94, gnl| = 0.

=0.

Second case: for [cip, Cap,  Capi], [Clps  Caps  C3py], and [cip,  Cap,  Capg] be lin-
early independent in R®. Tt can be checked that |S;| # 0 holds. We also have a linearly

3 3 3
independent set {Z Cip1Yi, Z CipyYis Z CipsGis G4, - 7gn}7 SO
i=1 i=1

i=1
3 3 3
E ciplgiv E cipgg’ia E cip3gi7 94, y9n
i=1 i=1 i=1

Here, without losing generality, let ¢;,, # 0 and define

£0.

3

3 3
K= z :ciplgi7 Cips9is § Cip39iy 94, y9n
i=1 i=1 i=1
5 3 3
Next, we have |¢1p, 7K = CipyJirClpy O CipaGis Clpy O CipsGis Jas =+ 5 Gnl| OT
i=1 i=1 i=1
3 3 3 3 3
2
|Clp1‘ IC: Zciplgi701p2 Zciplgi + : :Aigi’CIPS E Cip19i + § Bigiag4a"' »9n
i=1 i=1 i=2 i=1 i=2
C1 (&) C1 C3 C1 C2 C1 C3
where Ay = | Pt TPUL Ay = | TP PPUL By = | TP P and By = | Pt P
Clpy  C2p, Clp, C3py Clps C2pg Clps C3ps




70 Hilbert J. Math. Anal. Vol. 1-2 (2023) /Mochammad Idris

Lemma 2.1 and homogenity property of n-norm give us

3 3 3
ZCiplgi7 ZAigi7 ZBigiag‘h 5y 0n
i=1 i=2 i=2

‘Clpl |2K: =

" A, A
and then by Proposition 2.2, |¢ip, |[K = abs (‘BZ B3D ll91,92+93, 94>+ » gn| holds.
2 3
NOWa using Lemma 237 we get ‘Clm |]C = |61P1 \abs (|S3|) ||917927g37g47 e agnH .
We conclude that Hp1717271737g4> o agn” = abs(|83|) ||917927g3ag47 o 7gn|| . L

We do not stop for the real square matrix n = 3, but we will work for a real square
matrix S, with n > 3. We need special matrices for the following lemma and theorem.
Now, define a real square matrix S,, with n > 3,

Cipy  Cp; " Cnpy
Cips Cpy " Cnpy
S, = . . ) . . (2.6)
Cip, Cp, “°° Cnp,
We also define
Ay Az - Ay
As, Az - Az,
7?7-,/,1) = . . . 5 (27)
An,Z An,3 e An,n
where
Cipy  Capy Cipy  C3py Cipy  Cnpy
Ay = , Ars = , o, Ay =
Cip, Cap, Clp, C3p, Cips  Cnp,
Cipy  Capy Cipr  C3py Cipy  Cnp:
A3,2 = ) A3,3 = 3 ) As,n =
Clps C2ps Clps C3pg Clps  Cnps
Cipy  Capy Cip;  C3py Cipy  Cnpy
An,l = ) A’n,:’) = ) ] An,n = .
Cipn Cop, Cip, C3p, Cip, Cnpn

Here, we also give a property of determinant of a real square matrix, that is Laplace’s
expansion

Cipy C@pr """ Cnpy
c I e c n
1p2 2p2 np2| (_1)(k+1) c [C' }
= kpv | 1905 ] it ke i=1 o =2 |
k=1
Cip, ©p, " Cnp,

Lemma 2.5. Let S,, and T(,—1) (see (2.6) and (2.7)). We have

(n—2)
| Ttn-| = (c1p)"" 7 [Snl.
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Proof. Suppose that S,, and 7(,,—;) as above. Here, we need (n — 1) steps.

Step-1: We check that

(CipyCops — ClpaCapy)  Az3 Azn
(CipyCaps — ClpsCapy)  As3 Asn
|7?n71)| = . . :Clp1U1 _02101‘/17
(CipyCop, = Cip,Capy) Anz 0 Ann
C2py A2,3 Az,n Clip, A2,3 Az,n
Caps A3,3 A3,n Cips A3,3 As,n .
where U; = . and V; = . Meanwhile,
Cp, An,3 An,n Cip,, An,3 An,n
using the property of determinant of a square of matrices, we obtain
Clps  (CipiCapy — CipyCapy) (C1p1Crps — ClpsCnpy)
Clps (Clpl C3p3 — clpsc3p1) (Clpl Cnps — CIP3CTLLD1)
1 p—
Cip,  (C1piC3p, — C1p,Cap,) (C1p1Cnp, = Cip, Cnpy)
Clp  C3py " Cnpy
Clps C3ps  **°  Cpp.
_( )(n—z) 1p3 3p3 nps
=\C1p, .
clpn c3pn T cnpn
Step-2: We check that
Caps (Clpl C3py — Clp, c3p1) (clpl Cnpy — Clp2cnp1)
C2ps (clpl C3py — CIPSC3PI) (Clpl Cnps — Clp3c’ﬂp1)
U =
C2pn (C1piC3p, — Clp,Capy) (C1py Crp, — Cip, Cnpy )
=Cip; U, — Csplvza
Cops C3ps Az Cops Clps Azn
Cops  C3py Asn Cops  Clps Asn ,
where U, = . and V, = . . Meanwhile,
Cpn C3p, Ann Cpn Clp, Ann

using the property of determinant of a square of matrices, we obtain

C2py  Cipy (Clplcnpz - Clpzcnpl)
C2ps  Cips (Clpl Cnps — Clpg cn]h)
2 pu—
C2p, Clp, (Cipy Cnp, — Cip, Cap,)
Cip,  C3py  *°  Cnpy
c c e
( )(n—3) 1p3 3p3 nps
- clp1 .
Cip, Gp, *°° Cnp,
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We have to go to Step-3, Step-4, - - -, until Step-(n — 1): We check that

Cps Gps 0 (CpiCn—1)ps — ClpaCn-1)py)  (ClpiCnps — ClpsCrp,)
U Cps  C3pg " (Clpl C(n—1)ps — Cips C(n—l)m) (Clpl Cnps — Cips Cnpl)
(n—2)— . . .
Cpn,  Cp, (Clplc(nfl)pn — Cip, C(nfl)m) (C1p1Cnp, = Cip, Cnp:)
_ 2
=(c1p,) " Uin—1) = C1p,Cnpy Vin—1y »
where
Cps Cpy " Cn—1)p>  Cnpo Caps  C3py  °° Clpy  Cnpy
Cps  C3ps  °° Cn—1)ps Cnps Caps  C3ps  °°  Clps  Cnpg
Un-n=| . : - : .| and Vip—y =
Cp, Gp, 7 Cn-1p, Cnpn Cp, Cp, " Cap, Cnp,

We see again |7fn_1) | Using Step-1 until Step-(n — 1), we have
| Tonn | =(c1p)" P Uinoyy = (1p)™ ™ €np, Vi)
- (Clpl)(niz) Cn—1)ps Vin-2) — (Clpl)(niz) C(n-2)p1 Vin-3)
- (Clpl)(n_Z) C4P1Vv3 - (clpl)(n (n

Finally, we arrange to get

- C3p, Vi, — (Clpl) -2 C2p, Vi.

n
[ Tin—n | = (e1p) ™2 Y (D™D e, [Wie| = (c1p,) "2 S0l
k=1

where Wy, = [cipj] and kK =1,--- ,n. The proof is complete. L]

i kyi=l e n,G=2 e m

Theorem 2.6. Let an n-normed space X where n >3, (2.1) and (2.2). Let also S¢,—yy,
Sp, and py,p2,- - ,pn € Y with

n n n
P = E Cip1 9is P2 = E Cips¥ir > and p, = E Cip, Ji-
=1 1=1 i=1

If ||P17P27‘" 7p(n—1)7.gnH = ab5(|8(n—l) |) H917927"' ag(n—l)7gn||a then
||p17p27"’ 7an = abs(‘SnD ||gla.927"’ >gnH .

Proof. Now, take all of the assumptions. We write the following

n n n
||p17p27 e 7pn|| = § Cip19i5 § Cipa iyt s § Cip, 9i (28)
i=1 i=1 i=1
First case: for n linearly dependent vectors
[Clm Cpy Cnpl] ) [Clpz Cpy " Cnpz} ;0 , and [Clpn Cpn Cnpn] )

it is easy to check trivial case, that is |S,| = 0 and

n n n
E Cip, 9i, E CipaGis™ " s E Cip, 9i
i=1 i=1 i=1

We get ||p17p27"' up3|| =0 and abs(|SnD ||glagZ7"' 7gn|| =0.

=0.
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Second case: for n linearly independent vectors
and [clpn Cap,, cnpn] ,
, P, are also linearly independent. Consequently, we obtain

n
Y cipngiH # 0. Here, without
i=1

[clpl C2py cnpl] ) [Clm C2ps Cnm} 3T

we can check that p;,p,,---
n n

|Sn| 75 0 and ||p1,p2,- e ;pn” = Z Cip19i5 Z CipaGiy* -
i=1 i=1

losing generality, let ¢;,, # 0 and

n n
E Cip, 9i5 E CipaGiy - *
i=1 i=1

K :=

Z : clp"gz

Next, write |c1p, "V =

n
i» Clpy (Z Cingi) y " Cipy
i=1

<Z szﬂz)
=1

n n
Z Cip1Gi, Clp, <Z Clplgl> + Z A, i9i, " 5y Clp, (Z Clplgz> + Z An i9i

(n—=1) g
|Cl 1‘ K=
1=1 =2
where
Ay, = Cipr  C2py A, . = |Clp1 O . Ay, = Cipi  Cnp:
- ) - b n -
' Cips Cap, ' Cipy  C3p, Cips  Cnps
C1 C C1 C3 Cy C
Az, = ™ P A= P A= 0
Cips Caps Cips C3ps Cips  Cnps
C1 Cy C1 C3 C1 C
An,z — p1 Dp1 , An,3 — D1 p1 , cee An,n — D1 npi X
Clpn czpn Clpn C?’pn clpn C”pn
( 1) n
n— —
By Lemma 2.1, |cyp, | K= Z Cip1 i Z Az.iGiy-+ 5 >, Anigi|| holds. By assump-
1=2 1=2

tion, homogenity property of n- norm and Lemma 2.1, we get
|61P1 |(n72),C = abs (|7?n—1) D ”917927 te ,gnH .

Next, use Lemma 2.5 to show that [c1p, |72 K = |cip, |2 abs (ISu]) 191, 92, - - -

s Gnll-

Hencea ||p17p27"' 7pn|| = abs(|8n|) HgngW o agnH u

Here, Proposition 2.2, Proposition 2.4, and Theorem 2.6 form a pattern that becomes
a proof technique of mathematical induction. It can be seen that if we work in Y and
want to calculate the n-norm of n vectors in Y, then it is enough to take a product of the
absolute value of a scalar with the n-norm of g;,¢>,--- , g, € Y. The scalar is from the
determinant of the real square matrix of coefficient (by n vectors in Y').

2.2. A Norm And An Inner Product On Y

We take in |
a mapping (-, ) :
(1) {(z,z) >0 for every x € X; (z,z) =0 if and only if x =0 € X;
(2) (z,y) = (y,x) for every z,y € X;
(3) (ax,y) = a(z,y) for every x € X and for every scalars o € R;
(4) (x4 x2,y) = {x1,y) + (22,y), for every 21,2,y € X .

] that in general, for X be a real vector space, an inner product on X is
: X x X — R such that satisfying

3)
4)
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We say that a pair (X, (-,-)) is an inner product space. Meanwhile, a norm is a mapping
|-l : X — R which satisfies

(1) |lz|]| > 0, for every x € X; ||z|| = 0 if and only if z =0 € X;
(2) |lax|| = |a] ||z||, for every x € X and for every scalar a € R;
B3) Nz +yll <zl + llyll for every ,y € X.

Then, a pair of (X, || -||) is called a normed space.
Cipy Cpr " Cnpy
. . Cips Cps "**  Cnp .
Let us consider a real square matrix M,, = . . ) . |. The determinant
Cip, Cop, *°° Cnp,

of a square matrix has property |M,|* = |M,, M| with M is the transpose of M,,. Note
that

Ecpl ) Cpy iR"’ écm ) sziR" T écm ) Cpn, iR"

C C R” @ C R™ te C @ Rn

MnMg _ P2 .Pl D2 ~PpP2 P27 ~Pn 7
(Cpns Cpi)Rn  (CpnsCpa)Rn o {Cp,, Cp, )RP

where

n

(cp. Cp; R = Z Ckp; Ckp; > (2.9)
k=1

with ¢p,, ¢y, € R™. By (2.9), we also have

l[cpllrn =1/ {cp, cp)mr (2.10)

with ¢, € R™. It is easy to show that (2.9) is an inner product and (2.10) is a norm on R".
The readers can definitely do it. We see again that /| M, M| satisfies the properties of

T-norm, so we have
— 1
Rn = |[M7an I

Hcplvcpzv"' ’Cpn|
where ¢, Cp,, -, Cp, € R™.
On R™, inspired by [1, 6], we define a norm with respect to G on Y as follows
2
||p||G = Z Hp)gizv"' 7gin||

{i2,,in}C{1,+ 0}

n

for every p € Y. Without losing generality, we give py =p = > ¢;pg; and py = g where
j=1

n
k=2,3,---,n. One may check that p, = gr = >_ ¢jp,9; where
j=1

Cqp = [Clgk Cgp Cngk]
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with ¢;g, = 0 while ¢ # k and ¢;4, = 1 while ¢ = k. Next, we compute (¢, cg, )rn = Ckp,
(Cg;sCg)rn = 0 while j # k, and (cy;,cg, )r» = 1 while j = k. Now, we obtain

(CpsCp)rRn  Cap ++ Cnp
Cap 1 -~ 0
T
(MnMn){L...’n} = . . . :
Cop 0o --- 1

n n
2 2 2
Zcip - Zciz’ = Cp
i1 i

2 2 2 .
and ”pngv"' ,gnH = (MTLME){L‘.A,H} ||gl7923"' 7gn|| = C%pHgl’glf" agn” . This re-

sult is equivalent to Lemma 2.1 and (2.3). Next, {2,--- ,n} can be replaced by {i,, -+ ,i,} C
{17 ,TL}, S0
(CpsCp)Rn Cigp ="+ Cinp
., Ciap 1 0
(M”M”){iz,m,in}g{l«--,n} B : : .
Cirp 0 - 1
2
= Cip-

Consequently, we get

||pH2G = Z ||pvgi27"' >gin||2

{iz, - in}C{1,- i}
n
= (Zcfp> Hgng?"' agn”2
i=1

=lles|

for every p € Y. Since || - ||g» is induced from (-, -)gn, then we get an inner product with
respect to G on Y

2
91,92, 7gn||

2
Rn

<p1 ,P2>G = <CP170102>]R" ||gl,gZa e 7gn||2 )
for every p;,p, €Y.
In addition, we can replace {g1, - ,gn} with a set of linearly independent vectors
{fi,--+,fu} CY to define another norm and another inner product on Y. It can be
obtained, although with more complicated steps.

3. Concluding remarks

We have investigated Y as a subspace of (X, ||-,--- ,-||). We obtain that (Y, (-, )¢g) is
an inner product space and (Y, || - ||¢) is a normed space. On (Y, (-,-)), there are still
several functionals that can be defined. One may check and follow in [2, 5, 7, 8, 11-13].
In particular, to define the m-inner product, we have to use m < n.

Acknowledgements

The author would like to thank the anonymous reviewer(s) for useful comments and
suggestions to improve this article.



76

Hilbert J. Math. Anal. Vol. 1-2 (2023) /Mochammad Idris

References

[1]
[2]

S. Ekariani, H. Gunawan, M. Idris, A contractive mapping theorem on the n-normed
space of p-summable sequences, J. Math. Analysis, 4(1) (2013) 1-7.

C. R. Diminnie, S. Gahler, A. White, 2-inner product spaces, Demonstratio Math. 6
(1973) 525-536.

S. Gahler, Lineare 2-normietre Raume, Math. Nachr. 28 (1965), 1-43.
S. Géhler, Uber 2-Banach Raume, Math. Nachr. 42 (1969), 335-347.

H. Gunawan, An inner product that makes a set of vectors orthonormal, Austral.
Math. Soc. Gaz. 28 (2001) 194-197.

H. Gunawan, The space of p-summable sequences and its natural n-norms, Bull.
Austral. Math. Soc. 64 (2001), 137-147.

H. Gunawan, On n-inner products, n-norms, and the Cauchy-Schwarz inequality,
Sci. Math. Jpn. 55 (2002) 53—-60.

H. Gunawan, O. Neswan, W. Setya-Budhi, A formula for angles between two sub-
spaces of inner product spaces, Beitr. Algebra Geom. 46 (2005) 311-329.

S. Konca, M. Idris, H. Gunawan, p-summable sequence spaces with inner products,
Beuw J. Sci. Techn. 5 (1) (2015) 37-41.

S. Konca, M. Idris, Equivalence among three 2-norms on the space of p-summable
sequences, Journal of Inequalities and Special Functions 7, 4 (2015) 218-224.

E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons,
Inc., New York, 1978.

A. Misiak, n-inner product spaces, Math. Nachr. 140 (1989) 299-319.

A. Misiak, Orthogonality and orthonormality in n-inner product spaces, Math.
Nachr. 143 (1989) 249-261.



	Introduction
	Main Results
	Scalar by The Determinant of A Square Matrix
	A Norm And An Inner Product On Y

	Concluding remarks



