A note on Laplace Adomian decomposition method on a linear problem
DOI:
https://doi.org/10.62918/hjma.v2i1.16Keywords:
Ordinary differential equation, Initial value problem, Laplace Adomian decomposition methodAbstract
In last two decades, Laplace Adomian Decomposition Method (LADM) is vastly used to solve non-linear (or even fractional order) differential equations. The method approaches the solution with the partial sums of function series. However, it is not easy to show that the limit of the function series is the exact solution of the problem. In this article, we consider a simple problem such as homogenous second-order linear ordinary differential equation with constant coefficients. We prove analytically that the LADM gives the right exact solution to the considered problem.
References
G. Adomian, Solving Frontier Problems of Physics: the Decomposition Method}, Springer Science & Business Media 2013.
Fadaei, Application of Laplace-Adomian decomposition method on linear and nonlinear system of PDEs., Appl. Math. Sci., 5 (2011), 1307--1315.
T. Harko and M. K. Mak, A simple computational approach to the susceptible-infected-recovered (SIR) epidemic model via the Laplace-Adomian decomposition method, Rom. Rep. Phys., 73(114) (2021).
J. M. Heris, Solving the Integro-Differential Equations Using the Modified Laplace Adomian Decomposition Method, J. Math. Ext., 6 (2012), 41--55.
S. A. Khuri, Laplace decomposition algorithm applied to a class of nonlinear differential equations, J. Appl. Math., 1(2001), 141--155.
O. Kiymaz, An algorithm for solving initial value problems using Laplace Adomian decomposition method, Appl. Math. Sci., 3 (2009), 1453--1459.
P. Y. Tsai, An approximate analytic solution of the nonlinear Riccati differential equation, J. Frank. Inst., 347 (2010), 1850--1862.
S. P. Yan, H. Jafari, and H. K. Jassim, Local fractional Adomian decomposition and function decomposition methods for Laplace equation within local fractional operators, Adv. Math. Phys., 2014.(161580)} (2014).
A. O. Yunus, M. O. Olayiwola, K. A. Adedokun, J. A. Adedeji, and I. A. Alaje, Mathematical analysis of fractional-order Caputo’s derivative of coronavirus disease model via Laplace Adomian decomposition method, Beni-Suef univ. j. basic appl. sci., 11(144) (2022).
A. O. Yunus, M. O. Olayiwola, M. A. Omoloye, and A. O. Oladapo, A fractional order model of lassa disease using the Laplace-adomian decomposition method, Health Care Anal., 3(100167) (2023).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Hilbert Journal of Mathematical Analysis

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Hilbert Journal of Mathematical Analysis is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.