Boundedness of some classical operators in Bourgain-Morrey spaces

Authors

  • Nouffou Diarra Université Felix Houphouët Boigny
  • Pokou Nagacy Laboratoire des Sciences et Technologies de l’Environnement, UFR Environnement, Université Jean Lorougnon Gu´ed´é

DOI:

https://doi.org/10.62918/hjma.v2i2.22

Keywords:

Bourgain-Morrey spaces, Wiener amalgam spaces, Maximal operators, sublinear operators and their commutators, Fourier transform, Riesz potential operator

Abstract

In this paper, we establish relationships between the norms of both Bourgain-Morrey spaces and Wiener amalgam spaces. Therefore, we take advantage of these relations to study the action on Bourgain-Morrey spaces of some classical operators such as maximal operators, Hardy operators, some sublinear operators and their commutators, and the Fourier transform. We also establish in Bourgain-Morrey spaces a norm equivalence of Riesz potential and fractional maximal function.

References

C. Aguilor, S. Ortega, Boundedness of positive operators on weighted amalgams, J. Inequal. Appl. 13 (2011).

J. Bourgain, On the restriction and multiplier problems in R^3, in: Geometric Aspects of Functional Analysis (1989-90), in: Lecture Notes in Math., Springer, Berlin 1469 (1991), 179-191.

C. Carton-Lebrun, H.P. Heinig, S.C. Hofmann, Integral operators on weighted amalgams, Studia Math. 109 (1994), 133-157.

N. Diarra, Hardy-Littlewood-Sobolev theorem for Bourgain-Morrey spaces and approximation, Eur. J. Math. Anal. 4 (2024) 16.

D. Fan, S. Lu, D. Yang, Regularity in Morrey spaces of strong solutions to nondivergence elliptic equations with VMO coefficients, Georgian Math. J. 5 (1998), 425-440.

J. Feuto, Norm inequalities in some subspaces of Morrey space, Ann. Math. Blaise Pascal 21 (2) (2014), 21-37.

J. Fournier, J. Stewart, Amalgams of L^p and L^q, Bull. Am. Math. Soc. 13 (1985), 1-21.

A. Gogatishvili, R. Mustafayev, Equivalence of norms of Riesz potential and fractional maximal function in generalized Morrey spaces, Collect. Math. 63 (2012), 11-28.

L. Grafakos, Modern Fourier analysis, second edition, Graduate Texts in Math. 250, Springer, New York, 2009.

N. Hatano, T. Nogayama, Y. Sawano, D.I. Hakim, Bourgain-Morrey spaces and their applications to boundedness of operators, J. Funct. Anal. 284 (2023), 109720.

F. Holland, Harmonic Analysis on amalgams of L^p and L^q, J. Lond. Math. Soc. 10 (1975), 295-305.

S. Masaki, J. Segata, Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg-de Vries equation, Ann. I. H. Poincare (2018), 283-326.

S. Masaki, J. Segata, Refinement of Strichartz estimates for Airy equation and application, RIMS Kokyuroku Bessatsu, B80 (2020), 11-25.

C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126-166.

B. Muckenhoupt, R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974).

F. Soria, G. Weiss, A remark on singular integrals and power weights, Indiana Univ. Math. J. 43 (1), (1994), 187-204.

N. Wiener, On the representation of functions by trigonometrical integrals, Math. Z. 24 (1926), 575-616.

Downloads

Published

01-08-2024

How to Cite

Diarra, N., & Nagacy, P. . (2024). Boundedness of some classical operators in Bourgain-Morrey spaces. Hilbert Journal of Mathematical Analysis, 2(2), 068–079. https://doi.org/10.62918/hjma.v2i2.22