Legendre-Fenchel duality in m-convexity

Authors

  • Ratno Bagus Edy Wibowo Universitas Brawijaya
  • Marjono Universitas Brawijaya
  • Eko Dedi Pramana Universitas Brawijaya

DOI:

https://doi.org/10.62918/hjma.v2i2.23

Keywords:

Dual, Convex, m-convex, Legendre-Fenchel, Optimization

Abstract

The Legendre-Fenchel transform, which maps a function to its convex conjugate, provides a dual perspective that is fundamental in understanding optimization problems. In this work, we show that m-convex function in n-dimensional normed spaces can be viewed as the Legendre-Fenchel dual problem. By constructing an epi-graph of m-convexity in n-dimensional normed spaces, we obtained some properties including the Legendre transform. Particularly, we prove this for certain convex functions.

References

H. Chang and K. Chang, Optimal consumption–investment strategy under the Vasicek model: HARA utility and Legendre transform, Insurance: Mathematics and Economics. 72 (2017), 215-227.

R. D. Christyanti, R. B. E. Wibowo, and A. R. Alghofari, Existence and Uniqueness Solution of Euler-Lagrange Equation in Sobolev spaces W^{1,p}(Omega) with Gateaux Derivative, International Journal of Mathematical Analysis. 8 (2014), 1987-1998.

P. G. Ciarlet, G. Geymonat, and F. Krasucki, Legendre-Fenchel duality in elasticity, Comptes rendus de l'Académie des sciences. Série I, Mathématique. 349 (2011), 597-602.

D. Cordero-Erausquin, B. Klartag, Q. Merigot, and F. Santambrogio, One more proof of the Alexandrov–Fenchel inequality, Comptes Rendus Mathematique. 357 (2019), 676-680.

T. Lara, E. Rosales, and J. L. Sanchez, New Properties of m-Convex Functions^1, International Journal of Mathematical Analysis. 9 (2015), 735-742.

S. Liang, L. Y. Wang, and G. Yin, Exponential convergence of distributed primal–dual convex optimization algorithm without strong convexity, Automatica. 105 (2019), 298-306.

K. Ma, Locally constrained inverse curvature flow and an Alexandrov-Fenchel inequality in de Sitter spaces, Journal of Mathematical Analysis and Applications. 527 (2023), 127439.

N. Marentes and K. Nikodem, Remarks on strongly convex functions, Aequationes. Math. 80 (2010), 193-199.

M. Rohman, R. B. E. Wibowo, and Marjono, Stability of an almost surjective epsilon-isometry mapping in the dual of real Banach spaces, Aust. Jour. Math. Anal. 13 (2016), 1-9.

T. Suzuki, Applied Analysis: Mathematics for Science, Technology, Engineering, 3 ed, World Scientific. 2022.

J. L. Troutman, Variational Calculus with Elementary Convexity, Springer-Verlag. 1983.

C. M. Wilson, K. Li, Q. Sun, P. F. Kuan, and X. Wang, Fenchel duality of Cox partial likelihood with an application in survival kernel learning, Artificial Intelligence in Medicine. 116 (2021), 102077.

Y. Zhang and P. Zhao, Optimal reinsurance-investment problem with dependent risks based on Legendre transform, Journal of Industrial and Management Optimization. 16 (2020), 1457-1479.

Downloads

Published

06-08-2024

How to Cite

Wibowo, R. B. E., Marjono, & Pramana, E. D. (2024). Legendre-Fenchel duality in m-convexity. Hilbert Journal of Mathematical Analysis, 2(2), 099–105. https://doi.org/10.62918/hjma.v2i2.23

Most read articles by the same author(s)