On Invariant eigenvalues of Laplacian on complex star metric graphs

Authors

  • Yudi Soeharyadi Bandung Institute of Technology
  • Janny Lindiarni Bandung Institute of Technology
  • Pilipus Neri Agustima Sekolah Terpadu Pahoa, Jakarta
  • Mohammad Januar Ismail Burhan Department of Mathematics and Information Technology, Kalimantan Institute of Technology

DOI:

https://doi.org/10.62918/hjma.v1i2.13

Keywords:

Eigenvalues of Laplacian, star metric graphs, complex star metric graphs, Neumann-Kirchhoff vertex condition, star metric multigraph

Abstract

In this article eigenvalues of Laplacian acting on complex star metric graphs is considered. The operator is coupled with Neumann-Kirchhoff vertex condition, implying self adjointness of the operator. We exhibit the invariance of the eigenvalues over the number of the bonds of the star metric graphs. Moreover, the eigenvalues are also invariant over parallel bonds of the star metric multigraphs.

References

G. Berbolaiko, P. Kuchment, Introduction to Quantum Graphs, American Mathematical Society, USA, 2018.

J.P. Carini, et al. Bound states in waveguides and bent quantum wires. I., Applications to waveguide systems Physical Review B 55.15 (1997): 9842.

V. Kostrykin, J. Potthoff, and R. Schrader, Contraction semigroups on metric graphs. Proceedings of symposia in pure mathematics Vol. 77. American Mathematical Soc., 2008.

P. Kuchment, "Quantum graphs: an introduction and a brief survey." arXiv preprint arXiv:0802.3442 (2008).

D. Mugnolo, Semigroup methods for evolution equations on networks. Vol. 20. No. 4. Berlin: Springer, 2014.

P. Exner, and J. Lipovsky, Equivalence of resolvent and scattering resonances on quantum graphs. Contemporary Mathematics 447 (2007): 73.

F. Zhang, Matrix Theory: Basic Results and Techniques, Springer 2011.

Downloads

Published

11-08-2023

How to Cite

Soeharyadi, Y., Lindiarni, J., Agustima, P. N., & Burhan, M. J. I. (2023). On Invariant eigenvalues of Laplacian on complex star metric graphs. Hilbert Journal of Mathematical Analysis, 1(2), 81–92. https://doi.org/10.62918/hjma.v1i2.13