Subordinateness of the subclass of Bazilevic functions B_2(α)

Authors

  • Marjono Brawijaya University
  • Estelita Maria Fernandes Gaspar Universidade Nasional Timor Loro Sa’e
  • Rahmalia Firdausi Tamara Brawijaya University

DOI:

https://doi.org/10.62918/hjma.v1i2.12

Keywords:

univalent functions, Bazilevic functions, subordination

Abstract

In 1999 Marjono has published about the subordinateness of subclass of Bazilevic functions. However, the value of β(γ) is not the largest one. In this paper we present our work with my student Estelita Maria from Universidade Timor Loro Sa’e and Rahmalia Firdausi Tamara to find the largest β(γ). This result was obtain by using the similar way with the theorem before and stressing in optimize approaching and also by using the maximum modulus principles as mention in Remark 1.9. For an analytic, normalized function f such that f(0) = f′(0)−1 = 0, there is a largest number β∗(γ) such that subordination holds for α > 0, 0 < γ ≤ 1 and z ∈ D as an improvement of Marjono’s work.

References

N. M. Asih, S. Fitri, R. B. E. Wibowo and Marjono, Hankel Determinant and Toeplitz Determinant on the Class of Bazilevic Functions Related to the Bernoulli Lemniscate, European Journal of Pure and Applied Mathematics, Vol. 16 (2023), No. 2, 1290-1301.

I.E. Bazilevic, On a case of integrability in quadratures of the Loewner-Kufarev equation, Mat. Sb., 37 (79)(1955), 471-476. (Russian) MR 17, 356.

P.L. Duren, Univalent Functions, Springer-Verlag, 1983.

I.S. Jack, Functions starlike and convex of order $alpha$, J. London Math. Soc., (2) 3 (1971), 469-474.

J.E. Littlewood, On inequalities in the theory functions, Proc. London Math. Soc., 23 (1925), 481-519.

Marjono, Subordination on a subclass of Bazilevic Functions, MIHMI (Majalah Ilmiah Himpunan Matematika Indonesia), Bandung, Vol. 5 (1999), No. 1, 43-48.

S. Miller and P.T. Mocanu, Differential Subordinations and Univalence Functions, Michigan Math.J., 28 (1981), 157-171.

M. Obradovic and S. Owa, Certain subclass of Bazilevic Functions of type $alpha$, Internat. J. Math. & Math. Sci., 9(2) (1986), 347-359.

B.P. Palka, An Introduction to Complex Function Theory, Springer Verlag, 1991.

W. Rogosinski, On Subordinate Functions, it Proc. Cambridge Philos. Soc., 35 (1939), 1-26.

G. Schober, Univalent Functions Selected Topics, Lecture Notes in Mathematics no. 478, Springer-Verlag, 1975.

T. Sheil-Small, On Bazilevic Functions, Quart. J. Math. Oxford, (2), 23 (1972), 135-142.

R. Singh, On Bazilevic Functions, Proc. Amer. Math. Soc., 38 (1973), 261-271.

D.K. Thomas, On Bazilevic Functions, Trans. Amer. Math. Soc., 132 (1968), 353-361. MR 36, 5330.

D.K. Thomas, On a subclass of Bazilevic Functions, Internat. J. Math. & Math. Sci., 8 (1985), 779-783.

D.K. Thomas, N. Tuneski and A. Vasudevarao, Univalent Functions, De Gruyter, 2019.

Downloads

Published

11-08-2023

How to Cite

Marjono, Gaspar, E. M. F. ., & Tamara, R. F. (2023). Subordinateness of the subclass of Bazilevic functions B_2(α). Hilbert Journal of Mathematical Analysis, 1(2), 93–99. https://doi.org/10.62918/hjma.v1i2.12

Most read articles by the same author(s)